1. The function f is continuous.
2. Every point in \boldsymbol{G} has some neighborhood such that for every rectangle R lying in the neighborhood, $\int_{\partial R} f(z) d z=0$.

Then f is analytic in G.
Proof: Conclusion
is load, so W LOG

Goal: show mat f
has an amalytict-derivative.
Define $F(z)=\int_{\rightarrow} f(w) d w$
over a path that gees first vertically and then horizartally, ending at Z.
By fundamental the oven of calculus,
$\frac{\partial F}{\partial x}$ exists and equals $f(z)$.
To find $\frac{\partial F}{\partial y}$, make a rectangular detour.
Again apply fundamental theorem of calculus (and $d z=i d y$) to get $\frac{\partial F}{\partial y}=i f(z)$. F satisfies
Cauchy-Riemann equations.
F is analytic.
$F^{\prime}=f$, so f is analytic.

