Generalization to starshaped regions

Theorem. An analytic function in a star-shaped region has an anti-derivative.

$$F(z) = \int_{0}^{z} f(w) dw$$

(integrate along a line segment)
$$= \int_{0}^{1} f(tz) z dt$$
 (parametrize via $w = tz$)
Lei bniz rule to
differentiate inside
$$F'(z) = \int_{0}^{1} (f(tz) + f'(tz) tz) dt$$
 the integral
$$= \int_{0}^{1} \frac{d}{dt} (f(tz)t) dt$$
 product rule
$$= [f(tz)t]_{0}^{1} = f(z)$$

Title : Oct 8 (Page 1 of 7)

Corollary (Cauchy's integral theorem in star-shaped regions). If f is an analytic function inside a star-shaped region, and γ is a piecewise continuously differentiable closed curve lying inside the region, then $\int_{\gamma} f(z) dz = 0$.

 $\int_{S} f(z) dz$ = $\int_{V} F'(z) dz$ = Flend point) - F(start point) = 0

Some questions to be answered later

- 1. For which open sets is $\int_{\gamma} f(z) dz = 0$ for every analytic function f and every closed curve γ in the open set? Simply connected open sets
- 2. Given an open set, what property of a curve γ guarantees that $\int_{\gamma} f(z) dz = 0$ for every analytic function f in the open set? Winding Number
- 3. Which functions in a rectangle have the property that $\int_{\gamma} f(z) dz = 0$ for every closed curve γ in the rectangle? Movera's theorem

Title : Oct 8 (Page 3 of 7)

Going around in circles is analytic in an open set containing a disk D Suppose f bounded by a circle C $\int f(z) dz = O$ $\frac{1}{2\pi i} \int_C \frac{f(w)}{w-z} dw = -f(z)$ reduce to the case of a rectangle by adding and subtracting line segments and using the previous thereen for star-shaped regions.

Sample application of the residue theorem for circles

$$\int_{0}^{2\pi} \frac{1}{5+3\sin\theta} d\theta = \frac{\pi}{2}$$

$$= \int \frac{1}{5+3\cdot\frac{1}{2i}(e^{i\theta}-e^{-i\theta})} \frac{d2}{ie^{i\theta}} \qquad \begin{array}{c} 2=-e^{i\theta} \\ parametrises \\ unit arcle \\ unit arcle \\ \frac{1}{5+\frac{3}{2i}(2-\frac{1}{2})} \frac{d2}{i2} \qquad \begin{array}{c} 2=-ie^{i\theta} \\ d2 \\ \frac{1}{ie^{i\theta}} \\ \frac{1}{i2} \\ \frac{1}{i2}$$

Title : Oct 8 (Page 5 of 7)

January 2013 qualifying exam

1. Suppose $\sum_{n=0}^{\infty} a_n z^n$ is the Maclaurin series of the rational function $\frac{z}{1-z-z^2}$. Prove that the coefficient sequence $\{a_n\}_{n=0}^{\infty}$ is the sequence of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, ... (defined by the property that each number is the sum of the preceding two).

August 2014 qualifying exam

6. Prove that if 0 < |z| < 1, then $\frac{1}{4}|z| < |1 - e^z| < \frac{7}{4}|z|$. (you need to know $e \gtrsim 2.71g$)



