Theorem. An analytic function in a star-shaped region has an anti-derivative.

$$
F(z)=\int_{0}^{z} f(w) d w
$$

(integrate along a line segment)

$$
\left.\begin{array}{rl}
& =\int_{0}^{1} f(t z) z d t \quad \begin{array}{c}
\text { (parametrize via } w=t z) \\
\text { Leibniz rule to } \\
\text { differentiate inside }
\end{array} \\
F^{\prime}(z) & =\int_{0}^{1}\left(f(t z)+f^{\prime}(t z) t z\right) d t \text { the integral }
\end{array}\right] \begin{array}{ll}
\text { dit ain vale }
\end{array}
$$

Corollary (Cauchy's integral theorem in star-shaped regions). If f is an analytic function inside a star-shaped region, and γ is a piecewise continuously differentiable closed curve lying inside the region, then $\int_{\gamma} f(z) d z=0$.

$$
\begin{aligned}
& \int_{\gamma} f(z) d z \\
= & \int_{\gamma} F^{\prime}(z) d z \\
= & F(\text { end point })-F(\text { start port }) \\
= & O .
\end{aligned}
$$

Some questions to be answered later

1. For which open sets is $\int_{\gamma} f(z) d z=0$ for every analytic function f and every closed curve γ in the open set? simply connected open sets
2. Given an open set, what property of a curve γ guarantees that $\int_{\gamma} f(z) d z=0$ for every analytic function f in the open set?
winding number
3. Which functions in a rectangle have the property that $\int_{\gamma} f(z) d z=0$ for every closed curve γ in the rectangle?
Morea's theorem

Going around in circles

Suppose f is analytic in an open set containing a disk D bounded by a circle C.

$$
\begin{aligned}
& \int_{C} f(z) d z=0 \\
& \frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w=f(z)
\end{aligned}
$$

reduce to the close of a rectangle by adding and subtracting line segments and using the previous the rem for star-shaped regions.

Sample application of the residue theorem for circles

$$
\begin{aligned}
& \int_{0}^{2 \pi} \frac{1}{5+3 \sin \theta} d \theta=\frac{\pi}{2} \\
&= \int \frac{1}{5+3 \cdot \frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)} \frac{d z}{i e^{i \theta}} \\
&= \int_{\text {circle }} \frac{1}{5+\frac{3}{2 i}\left(z-\frac{1}{z}\right)} \frac{d z}{i z} \\
&= \int \frac{1}{5 i z+\frac{3}{2}\left(z^{2}-1\right)} \\
& \frac{3}{2}(z+3 i)(z+i / 3)
\end{aligned} d z
$$

$z=e^{i \theta}$
parametrizes unit circle

$$
d z=i e^{i \theta} d \theta
$$

quadratic formula

Denominator is zero when

$$
\begin{aligned}
& z=\frac{-5 i \pm \sqrt{-25+9}}{3}=-3 i,-\frac{i}{3} \\
& \text { So integral }=2 \pi i \cdot \operatorname{Res}\left(\frac{1}{\text { quadratic }},-\frac{i}{3}\right) \\
& =\left.2 \pi i \cdot \frac{1}{\frac{3}{2}(z+3 i)}\right|_{z=-\frac{i}{3}}=\frac{\pi}{2}
\end{aligned}
$$

1. Suppose $\sum_{n=0}^{\infty} a_{n} z^{n}$ is the Maclaurin series of the rational function $\frac{z}{1-z-z^{2}}$. Prove that the coefficient sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is the sequence of Fibonacci numbers $0,1,1,2,3,5$, $8,13, \ldots$ (defined by the property that each number is the sum of the preceding two).

August 2014 qualifying exam
6. Prove that if $0<|z|<1$, then $\frac{1}{4}|z|<\left|1-e^{z}\right|<\frac{7}{4}|z|$.

August 2013 qualifying exam
3. Show that $\int_{0}^{2 \pi} \frac{\cos (\theta)}{1-\cos (\theta)+\frac{1}{4}} \mathrm{~d} \theta=\frac{4 \pi}{3}$.

