

Title: Sept 24 (Page 1 of 5)

Theorem (Cauchy's residue theorem for rectangles). If f is analytic except at isolated points inside a rectangle R, then $f(z) dz = 2\pi i \times (sum \ of \ residues \ at \ the \ singular \ points).$ (proved so far only for first-order singularities) Assume finitely many singularities. **Theorem** (after Cauchy) If f(x+yi) tends to 0 uniformly with respect to x when $y \to \infty$, and if $\int_0^\infty |f(x+yi)| dy$ tends to 0 when $x \to \pm \infty$, then $\int_{-\infty}^\infty f(x) dx$ equals $2\pi i$ times the sum of the residues of f in the upper half-plane.

Title: Sept 24 (Page 2 of 5)

Proof of theorem.

If (2) by =

2ti × (sum of residues)

=
$$\int_{-r_2}^{r_3} f(x) dx + \int_{-r_4}^{r_5} f(x) dx$$

Vant to Show

lim $\int_{-r_4}^{r_5} f(x) dx = 0$

Fix ≤ 70 . Choose R_1 and R_2 such that

$$\int_{0}^{\infty} |f(x+iy)| dy < \frac{\epsilon}{3}$$

when $\chi > R_1$ and when $\chi < -R_2$.

Now if $r_1 > R_1$ and $r_2 > R_2$, then choose R_3 such that

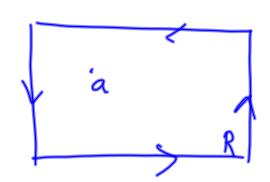
$$|f(x+iy)| \leq \frac{\epsilon}{3} (r_1 + r_2)$$

when $f(x+iy) = \frac{\epsilon}{3} (r_1 + r_2)$

Then $f(x+iy) = \frac{\epsilon}{3} (r_1 + r_2)$

Title: Sept 24 (Page 3 of 5)

$$\frac{1}{2\pi i} \int_{\partial R} \frac{f(w)}{w - a} \, dw = f(a)$$



Cauchy's integral theorem
or integral representation

$$\frac{1}{2\pi i} \int_{\partial R} \frac{f(w)}{(w-a)^2} \, dw = f'(a)$$

$$\frac{1}{2\pi i} \int_{\partial R} \frac{f(w)}{(w-a)^2} dw = f'(a)$$
 by Leibniz's rule for differentiating an integral

$$\frac{n!}{2\pi i} \int_{\partial R} \frac{f(w)}{(w-a)^{n+1}} \, dw = f^{(n)}(a)$$

Cauchy's example of a real function that is not represented by its Maclaurin series, its Machaurin serves whom x +0

Title: Sept 24 (Page 5 of 5)