Comparison of \mathbb{C} and \mathbb{R}
\mathbb{C} is a Igebraially C led.
\mathbb{R}^{2} has an order relation.

Comparison of \mathbb{C} and \mathbb{R}^{2}
Isomorpnic as real vector

Exercise. Show that a real-linear transformation of \mathbb{R}^{2}, represented by a real matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, corresponds to a complex-linear transformation of \mathbb{C} if and only if $a=d$ and $b=-c$.

Exercise. Each of the following relations in z defines a certain subset of the complex plane. Describe each set

1. $|z-i|<1$
2. $\operatorname{Re}[(1+i) z]>0$
3. $|z|+|z-1|=2$
 disk
4. $|z|+|z-1|=2$

5. $|z-i|<|z+i|$ open sapper

Two models of stereographic projection

Title : Sept 3 (Page 5 of 6)

Exercise. Derive the following formulas for the model of stereographic projection that uses a sphere of diameter 1 tangent to the complex plane at the origin (a different model from the one in the textbook).

If $x+i y($ or $z)$ is a point in the complex plane, and $\left(x_{1}, x_{2}, x_{3}\right)$ is the corresponding point on the sphere, then

$$
x=\frac{x_{1}}{1-x_{3}} \quad \text { and } \quad y=\frac{x_{2}}{1-x_{3}}
$$

also

$$
x_{1}=\frac{x}{|z|^{2}+1} \quad \text { and } \quad x_{2}=\frac{y}{|z|^{2}+1} \quad \text { and } \quad x_{3}=\frac{|z|^{2}}{|z|^{2}+1} .
$$

Moreover, the spherical distance d for this model has the following properties:

$$
d\left(z, z^{\prime}\right)=\frac{\left|z-z^{\prime}\right|}{\sqrt{|z|^{2}+1} \sqrt{\left|z^{\prime}\right|^{2}+1}} \quad \text { and } \quad d(z, \infty)=\frac{1}{\sqrt{|z|^{2}+1}}
$$

