Warm-up exercise

1. What are all the possible values of $\log (1+i)$ for different branches of the logarithm?
2. What are all the possible values of i^{i}, that is, $e^{i \log (i)}$?

Terminology: Paths

- A path in a region G means a continuous function whose domain is a closed, bounded interval (in \mathbb{R}) and whose image is a subset of G.
Example: If $\gamma(t)=e^{2 \pi i t}$, then $\gamma:[0,1] \rightarrow \mathbb{C}$ is a path, "the unit circle traversed counterclockwise."
- A path γ is smooth if the (real) derivative γ^{\prime} is continuous (γ^{\prime} is a one-sided derivative at an endpoint of the interval). Example: If $\gamma(t)=t^{3 / 2}+i \sin (t)$, then $\gamma:[0,1] \rightarrow \mathbb{C}$ is a smooth path.
- A path γ is piecewise smooth if the domain interval can be partitioned into finitely many subintervals on each of which γ is smooth.
Example: If $\gamma(t)=t+i|t|$, then $\gamma:[-1,1] \rightarrow \mathbb{C}$ is a piecewise smooth path.

A subtlety

Consider two versions of the unit circle:
$\gamma_{1}:[0,1] \rightarrow \mathbb{C}, \gamma_{1}(t)=e^{2 \pi i t}$, and
$\gamma_{2}:[0,2 \pi] \rightarrow \mathbb{C}, \gamma_{2}(t)=e^{i t}$.
These are different paths (different functions) representing the same geometric object in \mathbb{C}.

A curve is an equivalence class of paths, the equivalence relation being reparametrization.

In practice, the distinction between paths and curves is usually ignored.

Rectifiable paths

A path γ is rectifiable if the path has finite length in the following sense.

A partition of the domain interval of γ is a finite number of points $t_{0}, t_{1}, \ldots, t_{n}$ such that $t_{0}<t_{1}<\cdots<t_{n}$, and t_{0} is the left-hand endpoint, and t_{n} is the right-hand endpoint.

If the sum $\sum_{k=1}^{n}\left|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right|$ has a finite upper bound, independent of the partition, then γ has bounded variation.

The least upper bound of these sums is the total variation of γ, defined to be the length of the path.

An example and a non-example

- From real calculus, you know the length of a smooth parametric curve given by $x(t)$ and $y(t), 0 \leq t \leq 1$: namely,

$$
\int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

In the language of complex analysis, this formula says that a smooth path $\gamma:[0,1] \rightarrow \mathbb{C}$ is rectifiable and has length $\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t$. [Proposition 1.3 in Chapter IV]

- Giuseppe Peano (1858-1932) constructed the first "space-filling curve," a continuous non-rectifiable path whose image is a square.
[Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen 36 (1890), no. 1, 157-160]

Assignment due next class

- Read the beginning of $\S 3$ of Chapter III, through page 47.
- Solve Exercise 5 on page 54, which asks for the fixed points of dilation, translation, and inversion on the extended complex numbers.
- Solve Exercise 1 on page 67 about bounded variation.

