
Math 618 Three-circles theorem April 23, 2004

Variations on the maximum principle

I. Hadamard’s three-circles theorem

Suppose f is holomorphic in an open annulus { z ∈ C : r1 < |z| < r2 } and
continuous in the closed annulus. Let M(r) denote sup{ |f(z)| : |z| = r }.
Then M(r) ≤ max(M(r1),M(r2)) when r1 ≤ r ≤ r2 (by the maximum
modulus theorem).

Hadamard’s three-circles theorem says that more is true: namely, M(r)
satisfies a convexity property. The property may be written in either of the
following equivalent forms.

M(r) ≤ M(r1)
αM(r2)

1−α, where α =
log(r2/r)

log(r2/r1)
. (1)

log M(r) ≤ log r2 − log r

log r2 − log r1

log M(r1) +
log r − log r1

log r2 − log r1

log M(r2). (2)

In words, the inequality says that log M(r) is a convex function of log r.
The three-circles theorem can be proved in more than one way, but each

method requires overcoming a minor technical difficulty.

1. Prove the three-circles theorem by examining the function zβf(z), where
the real number β is chosen such that rβ

1 M(r1) = rβ
2 M(r2).

Here the technical difficulty is that when β is not an integer, the func-
tion zβf(z) is locally defined but not globally defined. Nonetheless,
one can deduce from the maximum modulus theorem that the globally
defined function |z|β|f(z)| takes its maximum on the boundary.

2. Prove the three-circles theorem by observing that the right-hand side
of inequality (2) defines a harmonic function that dominates the sub-
harmonic function log |f(z)| on the boundary of the annulus.

Here the technical difficulty is that we declared subharmonic functions
to be continuous, but log |f(z)| is not continuous if f has zeroes. (Some
authors allow subharmonic functions to be only upper semi-continuous,
in which case the functions may take the value −∞ at some points.)
One way to overcome the difficulty is to take the maximum of log |f(z)|
with a suitable negative constant.

3. Equality occurs in the inequalities (1) and (2) for which non-constant
holomorphic functions?
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Variations on the maximum principle

II. Phragmén-Lindelöf theory

4. The exponential function exp(z) has modulus equal to 1 on the bound-
ary of the right half-plane { z ∈ C : Re z > 0 }, but the exponential
function is not bounded in the right half-plane. Why does this not
contradict the maximum modulus theorem?

The following theorem may be interpreted as saying that the exponential
function is the “smallest” counterexample function in the right half-plane.
The theorem is the simplest instance of a general technique (based on damp-
ing functions) introduced in 1908 by E. Lindelöf and E. Phragmén.

Theorem 1. Suppose f is holomorphic in the open right half-plane, contin-
uous in the closed right half-plane, and |f(z)| ≤ 1 when Re z = 0. If there
exist a real number α strictly less than 1 and constants A and B such that
|f(z)| ≤ A exp(B|z|α) when Re z > 0, then |f(z)| ≤ 1 when Re z > 0.

5. Prove Theorem 1 by examining the function f(z) exp(−εzβ), where
α < β < 1. Apply the maximum principle on large semi-circles, and
let ε → 0+.

Another instance of the Phragmén-Lindelöf method is a version of the
maximum principle with an exceptional boundary point.

Theorem 2. Let f be a holomorphic function on a bounded domain G in C,
and let p be a point of the boundary ∂G. Suppose that lim supz→p |f(z)| < ∞,
and lim supz→w |f(z)| ≤ 1 for every point w in ∂G \ {p}. Then |f(z)| ≤ 1
for all z in G.

6. Prove Theorem 2 by applying the maximum principle to the subhar-
monic function |f(z)| + ε log |z − p| and letting ε → 0+.

7. Take the domain G to be the unit disc, and take the exceptional point p
to be 1. Why is the function exp((1+z)/(1−z)) not a counterexample
to Theorem 2?
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