Exercise on the order of an entire function

An entire function has a Maclaurin series expansion $\sum_{n=0}^{\infty} c_n z^n$ that converges in the entire complex plane. Since the series coefficients c_n uniquely determine the function, the order λ should be computable directly from the c_n . This exercise provides a formula for computing the order of an entire function from the Maclaurin series coefficients.

Recall that when f is an entire function, the quantity M(r) denotes $\max\{|f(z)| : |z| = r\}$, and λ equals $\limsup_{r\to\infty} \{\log \log M(r)\}/\{\log r\}$. In this exercise, you will prove that the order λ also equals

 $\limsup_{n \to \infty} \frac{n \log n}{\log \frac{1}{|c_n|}} \qquad \text{(interpret the fraction as 0 if } c_n = 0\text{)}.$

For working purposes, denote the preceding quantity temporarily by β ; you need to show that (a) $\beta \leq \lambda$ and (b) $\lambda \leq \beta$.

- **1.** Fix a positive ϵ . By the definition of order, $M(r) < e^{r^{\lambda+\epsilon}}$ for sufficiently large r. Bound $|c_n|$ for large n by applying Cauchy's estimate with $r = n^{1/(\lambda+\epsilon)}$, and deduce that $\beta \leq \lambda + \epsilon$. Let $\epsilon \downarrow 0$.
- **2.** Fix a positive ϵ . Then $|c_n| < n^{-n/(\beta+\epsilon)}$ for sufficiently large n, by the definition of β . Observe that $M(r) \leq \sum_{n=0}^{\infty} |c_n| r^n$. By splitting the sum where $n \approx (2r)^{\beta+\epsilon}$, show that $\lambda < \beta + 2\epsilon$. Let $\epsilon \downarrow 0$.

The proof of Hadamard's factorization theorem depends on the theory of infinite *products*. Your work above shows that one can also use infinite *series* to construct entire functions with prescribed growth.

3. Let s be an arbitrary positive real number, and suppose that

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{(n!)^{1/s}}$$

Show that f is an entire function of order s.