An entire function of intermediate growth

Answering Jan Cameron's question, Dakota Blair suggested the following example of an entire function that grows faster than any polynomial but that has order zero:

$$
\prod_{n=1}^{\infty}\left(1-\frac{z}{n!}\right)
$$

Since the function has infinitely many zeroes, it is not a polynomial; consequently, as John Paul Ward pointed out, the function must grow faster than any polynomial, by the version of Liouville's theorem in Exercise 7.8 in the textbook. On the other hand, since $\sum_{n}(n!)^{-\epsilon}$ converges for every positive ϵ, the function has order zero. ${ }^{1}$

If $M(r)$ denotes the maximum of the modulus of our function on a circle of radius r, then evidently

$$
\log M(r)=\sum_{n=1}^{\infty} \log \left(1+\frac{r}{n!}\right)
$$

The preceding general considerations show that $\log M(r)$ must grow faster than $k \log r$ for every positive constant k but slower than r^{ϵ} for every positive constant ϵ. In class, I tried unsuccessfully to show that $\log M(r)$ grows like $(\log r)^{2}$, and it turns out that the true growth rate of $\log M(r)$ is very slightly slower. In the following proposition, the symbol \sim means that the ratio of the two expressions has limit 1.

Proposition. We have the asymptotic relation

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{r}{n!}\right) \sim \frac{(\log r)^{2}}{2 \log \log r} \quad \text { as } r \rightarrow \infty
$$

Proof. The idea is to break the series at a suitable place and to make different estimates (both from above and from below) on the two sums. To simplify the expression on the right-hand side, it is convenient to replace the variable r

[^0]by $\exp \sqrt{s}$. Then we have to show that
$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right) \sim \frac{s}{\log s} \quad \text { as } s \rightarrow \infty
$$

Let N be the unique integer such that

$$
N!\leq e^{\sqrt{s}}<(N+1)!
$$

(where N depends on s). This integer is a good place to break the series.
Since $\log (1+x)<x$ when $x>0$, we have that

$$
0<\sum_{n=N+1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)<\sum_{n=N+1}^{\infty} \frac{e^{\sqrt{s}}}{n!}
$$

By the choice of N, all the terms of the series on the right-hand side are less than 1 , and each term is less than half the preceding one. Consequently, the series is bounded above by $\sum_{j=0}^{\infty} 1 / 2^{j}$, which converges to 2 , a bound that is independent of N and s. Using Landau's O and o notation (see section 2B of the textbook), we can say that

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)=O(1)+\sum_{n=1}^{N} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right) .
$$

If $n \leq N$, then $1+(\exp \sqrt{s}) / n!\leq 2(\exp \sqrt{s}) / n$!, so

$$
\sum_{n=1}^{N} \log \left(\frac{e^{\sqrt{s}}}{n!}\right)<\sum_{n=1}^{N} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)<N \log 2+\sum_{n=1}^{N} \log \left(\frac{e^{\sqrt{s}}}{n!}\right)
$$

Combining this inequality with the preceding equation shows that

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)=O(N)+N \sqrt{s}-\sum_{n=1}^{N} \log (n!)
$$

Notice that the term $N \sqrt{s}$ cannot be included in the term $O(N)$, because s is not a constant (and N depends on s).

In estimating the remaining sum, I use that $\log (n!)=n \log n+O(n)$, which results from the easy part of Stirling's formula (section 34D in the textbook). Since $\sum_{n=1}^{N} n=O\left(N^{2}\right)$, we then have that

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)=O\left(N^{2}\right)+N \sqrt{s}-\sum_{n=1}^{N} n \log n
$$

The function $x \log x$ is a monotonically increasing positive function when $x>1$, so comparing our sum with the area under a graph shows that

$$
\int_{1}^{N} x \log x d x<\sum_{n=1}^{N} n \log n<\int_{2}^{N+1} x \log x d x
$$

Since $\int x \log x d x=\frac{1}{2} x^{2} \log x-\frac{1}{4} x^{2}$, it follows that

$$
\sum_{n=1}^{N} n \log n=\frac{1}{2} N^{2} \log N+O\left(N^{2}\right)
$$

and therefore

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)=O\left(N^{2}\right)+N \sqrt{s}-\frac{1}{2} N^{2} \log N
$$

Finally, we need to make the relationship between N and s explicit. The definition of N says that

$$
\log N!\leq \sqrt{s}<\log (N+1)!
$$

so (again by Stirling's formula)

$$
\sqrt{s} \sim N \log N, \quad \text { and } \quad N \sqrt{s} \sim N^{2} \log N
$$

Combining this information with our previous growth estimate shows that

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)=\left(\frac{1}{2} N^{2} \log N\right)(1+o(1))
$$

To rewrite the right-hand side in terms of s, observe that

$$
\frac{1}{2} N^{2} \log N=\frac{(N \log N)^{2}}{2 \log N} \sim \frac{s}{2 \log N}
$$

Moreover, since $\sqrt{s} \sim N \log N$, it follows that

$$
\frac{1}{2} \log s-\log N-\log \log N \rightarrow 0, \quad \text { so } \quad \log s \sim 2 \log N .
$$

Thus

$$
\sum_{n=1}^{\infty} \log \left(1+\frac{e^{\sqrt{s}}}{n!}\right)=\frac{s}{\log s}(1+o(1))
$$

as claimed.

[^0]: ${ }^{1}$ We did not actually prove in class that the order of a canonical infinite product equals the convergence exponent of the zeroes, but this general property of infinite products follows from a small change in the argument that solves problem 4 on the third take-home examination.

