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An entire function of intermediate growth

Answering Jan Cameron’s question, Dakota Blair suggested the following
example of an entire function that grows faster than any polynomial but
that has order zero:

∞
∏

n=1

(

1 −
z

n!

)

.

Since the function has infinitely many zeroes, it is not a polynomial; conse-
quently, as John Paul Ward pointed out, the function must grow faster than
any polynomial, by the version of Liouville’s theorem in Exercise 7.8 in the
textbook. On the other hand, since

∑

n(n!)−ǫ converges for every positive ǫ,
the function has order zero.1

If M(r) denotes the maximum of the modulus of our function on a circle
of radius r, then evidently

log M(r) =

∞
∑

n=1

log
(

1 +
r

n!

)

.

The preceding general considerations show that log M(r) must grow faster
than k log r for every positive constant k but slower than rǫ for every positive
constant ǫ. In class, I tried unsuccessfully to show that log M(r) grows like
(log r)2, and it turns out that the true growth rate of log M(r) is very slightly
slower. In the following proposition, the symbol ∼ means that the ratio of
the two expressions has limit 1.

Proposition. We have the asymptotic relation

∞
∑

n=1

log
(

1 +
r

n!

)

∼
(log r)2

2 log log r
as r → ∞.

Proof. The idea is to break the series at a suitable place and to make different
estimates (both from above and from below) on the two sums. To simplify
the expression on the right-hand side, it is convenient to replace the variable r

1We did not actually prove in class that the order of a canonical infinite product equals

the convergence exponent of the zeroes, but this general property of infinite products

follows from a small change in the argument that solves problem 4 on the third take-home

examination.
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by exp
√

s. Then we have to show that

∞
∑

n=1

log

(

1 +
e
√

s

n!

)

∼
s

log s
as s → ∞.

Let N be the unique integer such that

N ! ≤ e
√

s < (N + 1)!

(where N depends on s). This integer is a good place to break the series.
Since log(1 + x) < x when x > 0, we have that

0 <

∞
∑

n=N+1

log

(

1 +
e
√

s

n!

)

<

∞
∑

n=N+1

e
√

s

n!
.

By the choice of N , all the terms of the series on the right-hand side are less
than 1, and each term is less than half the preceding one. Consequently, the
series is bounded above by

∑∞

j=0
1/2j, which converges to 2, a bound that is

independent of N and s. Using Landau’s O and o notation (see section 2B
of the textbook), we can say that

∞
∑

n=1

log

(

1 +
e
√

s

n!

)

= O(1) +
N

∑

n=1

log

(

1 +
e
√

s

n!

)

.

If n ≤ N , then 1 + (exp
√

s )/n! ≤ 2(exp
√

s )/n!, so

N
∑

n=1

log

(

e
√

s

n!

)

<

N
∑

n=1

log

(

1 +
e
√

s

n!

)

< N log 2 +

N
∑

n=1

log

(

e
√

s

n!

)

.

Combining this inequality with the preceding equation shows that

∞
∑

n=1

log

(

1 +
e
√

s

n!

)

= O(N) + N
√

s −
N

∑

n=1

log(n!).

Notice that the term N
√

s cannot be included in the term O(N), because
s is not a constant (and N depends on s).

In estimating the remaining sum, I use that log(n!) = n log n + O(n),
which results from the easy part of Stirling’s formula (section 34D in the
textbook). Since

∑N

n=1
n = O(N2), we then have that

∞
∑

n=1

log

(

1 +
e
√

s

n!

)

= O(N2) + N
√

s −
N

∑

n=1

n log n.
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The function x log x is a monotonically increasing positive function when
x > 1, so comparing our sum with the area under a graph shows that

∫ N

1

x log x dx <
N

∑

n=1

n log n <

∫ N+1

2

x log x dx.

Since
∫

x log x dx = 1

2
x2 log x − 1

4
x2, it follows that

N
∑

n=1

n log n = 1

2
N2 log N + O(N2),

and therefore
∞

∑

n=1

log

(

1 +
e
√

s

n!

)

= O(N2) + N
√

s − 1

2
N2 log N.

Finally, we need to make the relationship between N and s explicit. The
definition of N says that

log N ! ≤
√

s < log(N + 1)!,

so (again by Stirling’s formula)
√

s ∼ N log N, and N
√

s ∼ N2 log N.

Combining this information with our previous growth estimate shows that

∞
∑

n=1

log

(

1 +
e
√

s

n!

)

=
(

1

2
N2 log N

)

(1 + o(1)).

To rewrite the right-hand side in terms of s, observe that

1

2
N2 log N =

(N log N)2

2 log N
∼

s

2 log N
.

Moreover, since
√

s ∼ N log N , it follows that

1

2
log s − log N − log log N → 0, so log s ∼ 2 log N.

Thus
∞

∑

n=1

log

(

1 +
e
√

s

n!

)

=
s

log s
(1 + o(1)),

as claimed.
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