
Math 618 Take-home Examination 1 February 9, 2007

Instructions Do any five of the following six problems. You may consult
the textbook but not other sources; in particular, you may not ask another
person for help solving the problems. You may cite and use results proved
in the textbook or in class. Please submit your solutions to me in my office
(Milner 202) before 4:00 p.m. on Friday, February 16.

1. Solve problem 7 on the May 2004 complex analysis qualifying exami-
nation. The statement of the problem reads as follows:

Let f be an entire function. Prove that if f takes purely
real values on some pair of lines intersecting at an angle of
π/

√
2 radians, then f is a constant function.

2. This is a problem about Laurent series expansions “at infinity.”

Let f be an analytic function in a region in C that contains the com-
plement of some disk. Thus the region is “a punctured neighborhood of
infinity.” Then f has a Laurent series in powers of z and z−1 that con-
verges when |z| is sufficiently large (that is, when z is “near infinity”).
Suppose additionally that f is a one-to-one function onto another punc-
tured neighborhood of infinity, and let g denote the inverse function.

Suppose that the Laurent series of f near infinity has the following
form:

f(z) = a1z + a0 +

∞
∑

n=1

a
−n

zn
, where a1 6= 0.

Show first of all that the Laurent series near infinity of the inverse
function g has the following form:

g(z) = b1z + b0 +
∞

∑

n=1

b
−n

zn
.

In other words, show that all the coefficients of positive powers of z,
except for the coefficient b1, are equal to 0.

Next show that the first few coefficients b1, b0, and b
−1 satisfy the

following equations:

b1 =
1

a1

, b0 = −a0

a1

, and b
−1 = −a

−1.
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3. This question asks whether an analog of Pringsheim’s lemma holds for
Laurent series.

Suppose that 0 < r < R, and

f(z) =

∞
∑

n=−∞

cnz
n when r < |z| < R.

Suppose that the indicated Laurent series converges in the annulus
where r < |z| < R but in no larger concentric open annulus. If every
coefficient cn is a non-negative real number, must the points z = r
and z = R both be singular points of f? [Here “singular” means that
f does not admit a direct analytic continuation to a neighborhood of
the point.]

Supply either a proof or a counterexample.

4. This problem concerns branches of
√

z2 − 1, in other words, functions
f(z) such that f(z)2 = z2 − 1.

There are two parts to the question. Each part describes a function
f(z) that is a branch of

√
z2 − 1 on a certain region. For each part, do

the following: (i) find the values f(2i) and f(−2i), and (ii) determine
the range of f .

(a) Let the region be the complex plane with the intervals (−∞,−1]
and [1,∞) of the real axis removed. This plane with two infinite
slits is simply connected, and z2 − 1 is never equal to 0 on the
region, so there exists an analytic logarithm of z2 − 1 and hence
an analytic square root. Let f(z) be the branch of

√
z2 − 1 on this

region such that f(0) = +i.

(b) Let the region be the complex plane with the interval [−1, 1] of
the real axis removed. This plane with one finite slit is not simply
connected, but there is nonetheless an analytic square root of z2−1
on the region. The reason is that a closed loop in this region that
circles the branch point 1 must simultaneously circle the branch
point −1, so analytic continuation of a local branch of

√
z2 − 1

around a closed loop results in two cancelling sign changes. Let
f(z) be the branch of

√
z2 − 1 on this region such that f(2) = +

√
3.
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5. Suppose f is analytic on the closed unit disk1 with Maclaurin series
∑

∞

n=0
anz

n, and suppose additionally that |f(z)| ≤ 1 when |z| ≤ 1.
Then |a0| ≤ 1 (since a0 is a value of the function, namely a0 = f(0)),
and in the extreme case that |a0| = 1, the maximum principle implies
that an = 0 when n ≥ 1 (since in this extreme case f reduces to a
constant function).

Extrapolating from the extreme case, one might reasonably expect that
when |a0| is close to 1, the other coefficients an should be close to 0.
Your task is to prove the following quantitative formulation2 of this
expectation: namely, |an| ≤ 2(1 − |a0|) when n ≥ 1. You may wish to
follow these hints:

(i) There is no loss of generality in assuming that a0 is a non-negative
real number. Why?

(ii) Show that

−an =
1

2π

∫

2π

0

e−inθ
[

−f(eiθ)
]

dθ

=
1

2π

∫

2π

0

e−inθ
[

2 − f(eiθ) − f(eiθ)
]

dθ

when n ≥ 1.

(iii) Bound the modulus of the integral from above by a simpler inte-
gral, observing that the quantity 2 − 2 Re f(eiθ) is non-negative.
(Why?)

(iv) Show that

1

2π

∫

2π

0

[

2 − 2 Re f(eiθ)
]

dθ = 2 − 2a0.

(v) Put the pieces together to get the desired inequality.

1It is enough to assume that f is analytic on the open unit disk and continuous on the
closed disk. This follows by the standard device of working on a slightly smaller disk and
then passing to the limit as the radius increases to 1.

2An even stronger inequality is true, but proving it is correspondingly harder.
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6. In this problem, you will prove Hadamard’s three-circles theorem, a
topic that is not covered in the textbook but that is on the syllabus for
the complex analysis qualifying examination.

Suppose f is analytic in the closed3 annulus { z ∈ C : r1 ≤ |z| ≤ r2 }.
Let M(r) denote max{ |f(z)| : |z| = r }. The maximum principle
implies that M(r) ≤ max(M(r1), M(r2)) when r1 ≤ r ≤ r2.

Hadamard’s three-circles theorem says that much more is true: namely,
M(r) satisfies a certain convexity property. The property may be writ-
ten in either of the following two equivalent forms.

M(r) ≤ M(r1)
αM(r2)

1−α, where α =
log(r2/r)

log(r2/r1)
, or

log M(r) ≤ log r2 − log r

log r2 − log r1

log M(r1) +
log r − log r1

log r2 − log r1

log M(r2).

In words, the inequality says that log M(r) is a convex function of log r.
That is the language in which Hadamard originally stated the result4

(without proof).

[In general, a real-valued function g of a real variable is called a convex
function if g(tx + (1− t)y) ≤ tg(x) + (1− t)g(y) when 0 ≤ t ≤ 1. This
condition says geometrically that every chord joining two points of the
graph of g lies above the graph of g. Elementary calculus books often
refer to convex functions as being “concave up.”]

Your task is to supply a proof of the three-circles theorem by examin-
ing the function zβf(z), where the real number β is chosen such that
rβ
1
M(r1) = rβ

2
M(r2).

The main technical difficulty that you need to address is this: when
β is not an integer, the function zβf(z) is only locally defined (but not
globally defined on the annulus). Nonetheless, you should be able to
show that the globally defined real-valued function |z|β |f(z)| takes its
maximum on the boundary of the annulus. After that, you need only
do some routine calculations to produce the desired inequality.

3For the same reason as in the preceding problem, it is enough to assume that f is
analytic on the open annulus and continuous on the closed annulus.

4J. Hadamard, “Sur les fonctions entières,” Bulletin de la Société Mathématique de

France 24 (1896) 186–187.
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