The first big theorem for the semester:

Theorem (Riemann mapping theorem)

A proper subdomain of \mathbb{C} is topologically equivalent to the unit disk if and only if it is holomorphically equivalent to the unit disk.

Remark: The obvious generalization of this theorem to higher dimension is dramatically false.

If K is a compact subset of \mathbb{C} , then there is a norm on the space C(K) of continuous complex-valued functions on K:

$$||f||_{\mathcal{K}} = \max\{ |f(z)| : z \in \mathcal{K} \}.$$

A sequence $\{f_n\}_{n=1}^{\infty}$ converges to a limit function f in C(K) when $||f_n - f||_{\mathcal{K}} \to 0$, that is, when the sequence of functions converges *uniformly* on K.

Compactness

Theorem (Heine-Borel)

The following properties of a subset K of \mathbb{C} are equivalent:

- 1. K is compact,
- 2. K is both closed and bounded.

Theorem (Arzelà-Ascoli)

When K is a compact subset of \mathbb{C} , the following properties of a subset S of C(K) are equivalent:

- 1. S is compact,
- 2. S is closed, norm bounded, and uniformly equicontinuous,
- 3. S is closed, pointwise bounded, and pointwise equicontinuous.

Continuity: theme and variations

Continuity of f at z: For every positive ε there exists a positive δ such that $|f(z) - f(w)| < \varepsilon$ when $|z - w| < \delta$.

Uniform continuity of f on a set: The value of δ can be taken to be independent of z.

Equicontinuity of a family of functions at a point z: The value of δ can be taken to be independent of the function in the family.

Uniform equicontinuity of a family of functions on a set: The value of δ can be taken to be independent of both the function and the point.

Proof of Arzelà–Ascoli, (2) \implies (1)

C(K) is a metric space, so compactness is the same as sequential compactness.

Suppose the sequence $\{f_n\}_{n=1}^{\infty}$ is bounded and uniformly equicontinuous.

The strategy is to find a subsequence that converges at each point of a countable dense subset of K (via a diagonal argument) and then to invoke equicontinuity to show that convergence actually happens uniformly on all of K.

Assignment to hand in next time

Prove that (2) \iff (3) in the Arzelà–Ascoli theorem.