Welcome to Math 618

The first big theorem for the semester:
Theorem (Riemann mapping theorem)
A proper subdomain of \mathbb{C} is topologically equivalent to the unit disk if and only if it is holomorphically equivalent to the unit disk.

Remark: The obvious generalization of this theorem to higher dimension is dramatically false.

The metric space $C(K)$

If K is a compact subset of \mathbb{C}, then there is a norm on the space $C(K)$ of continuous complex-valued functions on K :

$$
\|f\|_{K}=\max \{|f(z)|: z \in K\}
$$

A sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to a limit function f in $C(K)$ when $\left\|f_{n}-f\right\|_{K} \rightarrow 0$, that is, when the sequence of functions converges uniformly on K.

Compactness

Theorem (Heine-Borel)
The following properties of a subset K of \mathbb{C} are equivalent:

1. K is compact,
2. K is both closed and bounded.

Theorem (Arzelà-Ascoli)
When K is a compact subset of \mathbb{C}, the following properties of a subset S of $C(K)$ are equivalent:

1. S is compact,
2. S is closed, norm bounded, and uniformly equicontinuous,
3. S is closed, pointwise bounded, and pointwise equicontinuous.

Continuity: theme and variations

Continuity of f at z : For every positive ε there exists a positive δ such that $|f(z)-f(w)|<\varepsilon$ when $|z-w|<\delta$.

Uniform continuity of f on a set: The value of δ can be taken to be independent of z.

Equicontinuity of a family of functions at a point z : The value of δ can be taken to be independent of the function in the family.

Uniform equicontinuity of a family of functions on a set: The value of δ can be taken to be independent of both the function and the point.

Proof of Arzelà-Ascoli, $(2) \Longrightarrow$ (1)

$C(K)$ is a metric space, so compactness is the same as sequential compactness.

Suppose the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ is bounded and uniformly equicontinuous.

The strategy is to find a subsequence that converges at each point of a countable dense subset of K (via a diagonal argument) and then to invoke equicontinuity to show that convergence actually happens uniformly on all of K.

Assignment to hand in next time

Prove that $(2) \Longleftrightarrow(3)$ in the Arzelà-Ascoli theorem.

