These three exercises generalize Section VI. 3 in the textbook and fill in some details.

1. Let $u(x, y)$ be a subharmonic function in a vertical strip $\left\{(x, y) \in \mathbb{R}^{2}: a<x<b\right.$, $y \in \mathbb{R}\}$. Suppose that $u$ is not identically equal to $-\infty$ and that $u$ is bounded above.
Let $m(x)$ denote $\sup \{u(x, y): y \in \mathbb{R}\}$ (the supremum of the values of $u$ on a vertical line). The hypothesis implies that the quantity $m(x)$ is a finite real number for each $x$.
Your task is to show that $m(x)$ is a convex function on the interval ( $a, b$ ). In other words, if $x_{1}$ and $x_{2}$ and $x$ are real numbers such that $a<x_{1}<x<x_{2}<b$, and a real number $t$ between 0 and 1 is defined by the property that $x=t x_{1}+(1-t) x_{2}$, then

$$
m(x) \leq \operatorname{tm}\left(x_{1}\right)+(1-t) m\left(x_{2}\right) .
$$

An equivalent statement is that

$$
m(x) \leq \frac{x_{2}-x}{x_{2}-x_{1}} m\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} m\left(x_{2}\right) \quad \text { when } \quad x_{1}<x<x_{2} .
$$

Suggestion: Use as a comparison harmonic function a first-degree polynomial (in $x$ ) plus $\varepsilon \operatorname{Re} \cos \frac{x+i y-a}{b-a}$. Cut the strip off at a large value of $|y|$ to get a bounded region on which to apply the maximum principle. Then let $\varepsilon$ go to 0 .
2. Hadamard's three-lines theorem for holomorphic functions:

Let $f$ be a bounded holomorphic function in a vertical strip $\{x+i y \in \mathbb{C}: a<x<b\}$, and let $M(x)$ denote $\sup \{|f(x+i y)|: y \in \mathbb{R}\}$. Show that if $a<x_{1}<x_{2}<b$, then

$$
M\left(t x_{1}+(1-t) x_{2}\right) \leq M\left(x_{1}\right)^{t} M\left(x_{2}\right)^{1-t} \quad \text { when } \quad 0<t<1
$$

This property of the function $M$ is called logarithmic convexity.
Suggestion: If $f$ is holomorphic, then $\log |f|$ is subharmonic. Apply part 1.
3. Hadamard's three-circles theorem for holomorphic functions:

Let $f$ be a holomorphic function in an annulus $\{z \in \mathbb{C}: a<|z|<b\}$, and let $M(r)$ denote $\max \{|f(z)|:|z|=r\}$. Show that if $a<r_{1}<r_{2}<b$, then

$$
M\left(r_{1}^{t} r_{2}^{1-t}\right) \leq M\left(r_{1}\right)^{t} M\left(r_{2}\right)^{1-t} \quad \text { when } \quad 0<t<1
$$

An equivalent statement is that if $a<r_{1}<r<r_{2}<b$, and $t=\frac{\log \left(r_{2} / r\right)}{\log \left(r_{2} / r_{1}\right)}$, then

$$
M(r) \leq M\left(r_{1}\right)^{t} M\left(r_{2}\right)^{1-t}
$$

Suggestion: If $f(z)$ is holomorphic in an annulus, then $f\left(e^{z}\right)$ is holomorphic in a vertical strip. Apply part 2.

