
Math 618 Theory of Functions of a Complex Variable II
Take-home Midterm Examination

Spring 2019

Instructions. Your solutions are due at the beginning of class on Thursday, February 28.
You may consult the textbook and the notes from class. If you invoke a theorem or a formula
from one of these sources, please state the result that you are using.

1. One of Montel’s theorems says that a family  of analytic functions on an open set G
in ℂ is locally bounded if and only if the family is normal. Here “normal” means that
every sequence {fn}∞n=1 in  has a subsequence that converges uniformly on compact
subsets of G to an analytic function (which may or may not belong to the family  ). In
other words, “normal” means precompact in the metric space C(G,ℂ).
There is an extended sense of the word “normal” in common use that allows the limit
of the convergent subsequence to be either an analytic function or the constant∞. This
extended sense of “normal” amounts to saying that the family  is precompact in the
metric space C(G,ℂ∞).
Consider the following concrete example. Suppose G is { z ∈ ℂ ∶ |z| < 1 } (the unit
disk) and  is the family of analytic functions mapping G into { z ∈ ℂ ∶ Re(z) > 0 }
(the right-hand half-plane). The family  is not normal in the original sense, for the
sequence {n}∞n=1 of constant functions has no subsequence that converges to an analytic
function. But this sequence does converge to the point∞ in ℂ∞, the extended complex
numbers.
Your task is to prove for this example that the family  is indeed normal in the extended
sense. You need to show that for an arbitrary sequence {fn}∞n=1 in  , either there is a
subsequence converging uniformly on compact subsets of the unit disk to an analytic
function, or there is a subsequence converging uniformly on compact sets to∞.

Remark. This problem will become trivial later in the course, after we learn a deep
result known as Montel’s Fundamental Normality Criterion. The most direct approach
using tools that we have available now is probably to compose with the following linear
fractional transformation:

'(z) = 1 − z
1 + z

.

This function ' is equal to its own inverse (that is, '◦' = identity), and ' maps the
right-hand half-plane bijectively to the unit disk.

2. The Riemann mapping theorem says that if G is a proper connected open subset of ℂ,
and if G is simply connected, and if z0 is a specified base point in G, then there exists
a bijective holomorphic function mapping G onto the unit disk and taking z0 to 0. The
standard proof solves an extremal problem in the family of all injective holomorphic
functions mapping G into (not necessarily onto) the unit disk and taking z0 to 0.
The extremal problem in the textbook maximizes |f ′(z0)| for f in the given family. The
proof from class instead chooses a point z1 inG different from z0 andmaximizes |f (z1)|.
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Choose whichever of these two extremal problems that you prefer, and consider the
corresponding extremal problem in the larger family  of all holomorphic functions
(not necessarily injective, not necessarily surjective) mapping G into the unit disk and
taking z0 to 0. Your task is prove that
(a) the extremal problem has a solution within this larger family  , and
(b) this extremal function is a bijective holomorphic function that maps G onto the unit

disk.

Hint. Part (b) is easier than appears at first sight. Instead of repeating the whole proof
of the Riemannmapping theorem, you can exploit the properties of the extremal function
that exists within the standard class of injective holomorphic functions.

3. According to the theorem of Weierstrass, there must exist entire functions having zeros
at the integer lattice points in the first quadrant (and at no other points). The goal of this
problem is to establish a concrete example of such a function.
Your task is to prove that

∞
∏

m=1

∞
∏

n=1

(

1 − z
m + in

)

exp
(

z
m + in

+ z2

2(m + in)2

)

converges uniformly on each compact subset of ℂ. Here
∞
∏

m=1

∞
∏

n=1
can be interpreted as

lim
M→∞

M
∏

m=1
lim
N→∞

N
∏

n=1
.

4. The function Γ is a meromorphic function that “interpolates” the factorial function at
the positive integers, namely, Γ(n + 1) = n! when n ∈ ℕ. In 1895, the famous French
mathematician Jacques Hadamard (1865–1963) gave an example of an entire function F
that interpolates the factorial function, namely,

F (z) =
Γ(z) sin(�z)

�
d
dz
log

Γ
(

1
2
− z

2

)

Γ
(

1 − z
2

) .

Your task is to verify this example. In other words, prove that
(a) F is an entire function

(in the sense that the definition of F does not depend on the choice of the branch of
the logarithm, and the apparent singularities in the function are removable), and

(b) F (n + 1) = n! when n is a positive integer.
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