
Math 618 Theory of Functions of a Complex Variable II
Take-home Midterm Examination

Spring 2019

Instructions. Your solutions are due at the beginning of class on Thursday, February 28.
You may consult the textbook and the notes from class. If you invoke a theorem or a formula
from one of these sources, please state the result that you are using.

1. One of Montel’s theorems says that a family  of analytic functions on an open set G
in ℂ is locally bounded if and only if the family is normal. Here “normal” means that
every sequence {fn}∞n=1 in  has a subsequence that converges uniformly on compact
subsets of G to an analytic function (which may or may not belong to the family  ). In
other words, “normal” means precompact in the metric space C(G,ℂ).
There is an extended sense of the word “normal” in common use that allows the limit
of the convergent subsequence to be either an analytic function or the constant∞. This
extended sense of “normal” amounts to saying that the family  is precompact in the
metric space C(G,ℂ∞).
Consider the following concrete example. Suppose G is { z ∈ ℂ ∶ |z| < 1 } (the unit
disk) and  is the family of analytic functions mapping G into { z ∈ ℂ ∶ Re(z) > 0 }
(the right-hand half-plane). The family  is not normal in the original sense, for the
sequence {n}∞n=1 of constant functions has no subsequence that converges to an analytic
function. But this sequence does converge to the point∞ in ℂ∞, the extended complex
numbers.
Your task is to prove for this example that the family  is indeed normal in the extended
sense. You need to show that for an arbitrary sequence {fn}∞n=1 in  , either there is a
subsequence converging uniformly on compact subsets of the unit disk to an analytic
function, or there is a subsequence converging uniformly on compact sets to∞.

Remark. This problem will become trivial later in the course, after we learn a deep
result known as Montel’s Fundamental Normality Criterion. The most direct approach
using tools that we have available now is probably to compose with the following linear
fractional transformation:

'(z) = 1 − z
1 + z

.

This function ' is equal to its own inverse (that is, '◦' = identity), and ' maps the
right-hand half-plane bijectively to the unit disk.

Solution. Given a sequence {fn}∞n=1 in  , consider the sequence {'◦fn}∞n=1 of com-
posite functions. The functions in this new sequence map into the unit disk, so the new
sequence is not only locally bounded but even bounded. By Montel’s theorem, the new
sequence forms a normal family. Consequently, there is an increasing sequence {nj}∞j=1
of natural numbers such that the sequence {'◦fnj}

∞
j=1 converges uniformly on compact

subsets of the unit disk to some analytic function g.
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The range of g must be a subset of the closed unit disk, and if the range of g contains
a point of the boundary of the unit disk, then g must be a constant function (by the
maximum principle or by the open-mapping theorem). The argument now splits into
two cases. Either g is the constant function −1, or the point −1 is not in the range of g.
When g ≡ −1, fix a compact subsetK of the unit disk and a (large) positive numberM .
Since ' has a pole at −1, there is a (small) positive " such that |'(w)| > M when
0 < |w + 1| < ". Since '◦fnj → −1 uniformly on K , there is a positive integer J
such that |'◦fnj (z) + 1| < " when z ∈ K and j > J . Taking w to be '◦fnj (z) reveals
that |'◦'◦fnj (z)| > M when z ∈ K and j > J . But '◦' is the identity map, so
|fnj (z)| > M when z ∈ K and j > J . Since K andM are arbitrary, the subsequence
{fnj}

∞
j=1 converges uniformly on compact sets to∞.

Now suppose that the point −1 is not in the range of g. Fix a compact subset K of the
unit disk. The image set g(K) is compact and does not contain the point−1. Let � be the
distance between the set g(K) and the point −1, and let L be the compact set consisting
of all points whose distance from g(K) is less than or equal to �∕2. Since '◦fnj → g
uniformly on K , there is a (large) positive integer J such that the range of '◦fnj is
contained in L when j > J . But ' is uniformly continuous on L, so '◦'◦fnj → '◦g
uniformly on K . In other words, fnj → '◦g uniformly on compact subsets of the unit
disk.
Accordingly, the family  is normal in the extended sense. Every sequence of func-
tions in the family has either a subsequence converging normally to∞ or a subsequence
converging normally to an analytic function.

2. The Riemann mapping theorem says that if G is a proper connected open subset of ℂ,
and if G is simply connected, and if z0 is a specified base point in G, then there exists
a bijective holomorphic function mapping G onto the unit disk and taking z0 to 0. The
standard proof solves an extremal problem in the family of all injective holomorphic
functions mapping G into (not necessarily onto) the unit disk and taking z0 to 0.
The extremal problem in the textbook maximizes |f ′(z0)| for f in the given family. The
proof from class instead chooses a point z1 inG different from z0 andmaximizes |f (z1)|.
Choose whichever of these two extremal problems that you prefer, and consider the
corresponding extremal problem in the larger family  of all holomorphic functions
(not necessarily injective, not necessarily surjective) mapping G into the unit disk and
taking z0 to 0. Your task is prove that
(a) the extremal problem has a solution within this larger family  , and
(b) this extremal function is a bijective holomorphic function that maps G onto the unit

disk.
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Hint. Part (b) is easier than appears at first sight. Instead of repeating the whole proof
of the Riemannmapping theorem, you can exploit the properties of the extremal function
that exists within the standard class of injective holomorphic functions.

Solution. For part (a), observe that the family  is bounded, hence—by Montel’s
theorem—normal (in the original sense of “normal”). And the family  contains the
Riemann mapping function, so is nonvoid.
Let M be sup{ |f ′(z0)| ∶ f ∈  } for the book’s extremal problem or sup{ |f (z1)| ∶
f ∈  } for the extremal problem from class. Take a sequence {fn}∞n=1 in  such that
|f ′n(z0)| → M , respectively |fn(z1)| → M . By normality, there is a subsequence that
converges uniformly on compact subsets of G to some analytic function g. Evidently
g(z0) = 0, since the singleton {z0} is a compact set. For the extremal problem from
the book, |g′(z0)| = M (since normal convergence is inherited by derivatives), and for
the extremal problem from class, |g(z1)| = M ; so g is not a constant function. By the
open-mapping theorem, the range of g is an open set. A priori, the range of g is a subset
of the closed unit disk, but being open, the range is actually a subset of the open unit
disk. Thus the limit function g belongs to the family  .
For part (b), let ℎ denote the extremal function that is known to exist for the family of
injective holomorphic functions. In other words, let ℎ be the known (bijective) Riemann
mapping function. This function ℎ is a candidate for the solution of the extremal prob-
lem in the larger family  , so |ℎ′(z0)| ≤ |g′(z0)| (for the book’s extremal problem) or
|ℎ(z1)| ≤ |g(z1)| (for the extremal problem from class). The composite function g◦ℎ−1
maps the unit disk into itself, fixing the origin. By the Schwarz lemma, |(g◦ℎ−1)′(0)| ≤ 1
and |g◦ℎ−1(w)| ≤ |w| for every point w in the unit disk.
For the extremal problem from the book, observe that (g◦ℎ−1)′(0) = g′(z0)∕ℎ′(z0), so
|g′(z0)| ≤ |ℎ′(z0)|. Since inequality holds in the other direction too, the values |g′(z0)|
and |ℎ′(z0)| are equal. So equality holds in the Schwarz lemma, which implies that
g◦ℎ−1 is a rotation. Therefore g is a composition of two bijections, hence a bijection
itself.
For the extremal problem from class, apply the deduction that |g◦ℎ−1(w)| ≤ |w| with
w equal to ℎ(z1). Then |g(z1)| ≤ |ℎ(z1)|. Since inequality holds in the other direction
too, the values |g(z1)| and |ℎ(z1)| are equal. So equality holds in the Schwarz lemma at
a nonzero point, which implies that g◦ℎ−1 is a rotation. Therefore g is a composition of
two bijections, hence a bijection itself.

3. According to the theorem of Weierstrass, there must exist entire functions having zeros
at the integer lattice points in the first quadrant (and at no other points). The goal of this
problem is to establish a concrete example of such a function.
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Your task is to prove that
∞
∏

m=1

∞
∏

n=1

(

1 − z
m + in

)

exp
(

z
m + in

+ z2

2(m + in)2

)

converges uniformly on each compact subset of ℂ. Here
∞
∏

m=1

∞
∏

n=1
can be interpreted as

lim
M→∞

M
∏

m=1
lim
N→∞

N
∏

n=1
.

Solution. It suffices to show that, for every positive radius R, both of the products
converge uniformly on the closed disk { z ∈ ℂ ∶ |z| ≤ R }. A proposition from class
(part of the proof of the Weierstrass factorization theorem) implies that if |w| ≤ 1∕2,
then

|

|

|

|

w + 1
2
w2 + log (1 −w)

|

|

|

|

≤ |w|3.

Accordingly, when |z| ≤ R, and n ≥ 2R, and m is an arbitrary positive integer, the
following inequality holds:

|

|

|

|

z
m + in

+ z2

2(m + in)2
+ log

(

1 − z
m + in

)

|

|

|

|

≤ R3

|m + in|3
.

The main technical point in the solution is the following statement, the proof of which
is deferred to the end.

Lemma. The double series
∞
∑

m=1

∞
∑

n=1

1
|m + in|3

converges.

A consequence is that the series

∑

n≥2R

|

|

|

|

z
m + in

+ z2

2(m + in)2
+ log

(

1 − z
m + in

)

|

|

|

|

converges uniformly for z in the closed disk of radius R. Since the exponential function
is uniformly continuous on compact sets, the product

∏

n≥2R

(

1 − z
m + in

)

exp
(

z
m + in

+ z2

2(m + in)2

)

converges uniformly on the closed disk of radius R for each fixed positive integer m.
Multiplying by a finite number of entire functions preserves the uniform convergence,
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so the corresponding product
∞
∏

n=1
converges uniformly on the same disk. Since R is

arbitrary, the product

∞
∏

n=1

(

1 − z
m + in

)

exp
(

z
m + in

+ z2

2(m + in)2

)

converges normally on ℂ for each m.
Similarly, the Lemma implies that the series

∑

m≥2R

∞
∑

n=1

|

|

|

|

z
m + in

+ z2

2(m + in)2
+ log

(

1 − z
m + in

)

|

|

|

|

converges uniformly when |z| ≤ R. Exponentiating shows that the product

∏

m≥2R

∞
∏

n=1

(

1 − z
m + in

)

exp
(

z
m + in

+ z2

2(m + in)2

)

converges uniformly when |z| ≤ R. Multiplying by the missing finite number of factors
preserves the uniform convergence. And since R is arbitrary, the normal convergence
of the original double product is demonstrated.

Proof of the lemma. Since all the terms are positive, the order of summation does not
matter: the partial sums are monotonically increasing, so the series converges to the
least upper bound of the partial sums. All that needs to be shown is that there is an
upper bound for the partial sums. There are several ways to prove such an upper bound.

Method 1. Regroup the sum as
∞
∑

k=2

∑

m≥1
n≥1

m+n=k

1
|m + in|3

. If m and n are positive integers

with sum k, then one of m and n must be at least k∕2. Accordingly, |m + in| > k∕2,
and 1∕|m + in|3 < 8∕k3. There are k − 1 pairs of positive integers m and n for which
m + n = k, so the inner sum is less than 8∕k2. From first-year calculus, it is known that
∞
∑

k=2
8∕k2 is finite.

Method 2. Since

1
|m + in|3

= 1
|m + in|3∕2

⋅
1

|m + in|3∕2
< 1
m3∕2

⋅
1
n3∕2

,
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the double sum in the Lemma is bounded above by
( ∞
∑

n=1

1
n3∕2

)2

,

which is known from first-year calculus to be finite.

Method 3. Comparing with the area under a curve reveals that when m is a positive
integer,

∞
∑

n=1

1
|m + in|3

=
∞
∑

n=1

1
(m2 + n2)3∕2

< ∫

∞

0

1
(m2 + x2)3∕2

dx.

A substitution (x = mt) converts the integral to

1
m2 ∫

∞

0

1
(1 + t2)3∕2

dt.

This integral with respect to t actually has value equal to 1, but all that is needed is the
knowledge that the integral converges. Hence the double sum in the statement of the

Lemma is bounded above by a constant times the series
∞
∑

m=1
1∕m2, which is known to be

finite.

4. The function Γ is a meromorphic function that “interpolates” the factorial function at
the positive integers, namely, Γ(n + 1) = n! when n ∈ ℕ. In 1895, the famous French
mathematician Jacques Hadamard (1865–1963) gave an example of an entire function F
that interpolates the factorial function, namely,

F (z) =
Γ(z) sin(�z)

�
d
dz
log

Γ
(

1
2
− z

2

)

Γ
(

1 − z
2

) .

Your task is to verify this example. In other words, prove that
(a) F is an entire function

(in the sense that the definition of F does not depend on the choice of the branch of
the logarithm, and the apparent singularities in the function are removable), and

(b) F (n + 1) = n! when n is a positive integer.
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Solution. The apparent singularities occur at the poles of Γ(z) (which are the negative
integers and 0), at the poles of Γ(1

2
− z

2
) (which are the odd positive integers), and at the

poles of Γ(1 − z
2
) (which are the even positive integers). What needs to be shown, then,

is that F represents an analytic function on ℂ ⧵ ℤ and that a finite limit exists at each
integer.
On any disk that avoids all the integers, the quotient of Gamma functions is an analytic
function without zeros, so there is an analytic logarithm. Since different branches of the
logarithm differ locally by a constant, taking the derivative eliminates the ambiguity in
the logarithm. Thus F does represent a well-defined analytic function on ℂ ⧵ ℤ.
At the negative integers and 0, the simple poles ofΓ(z) are canceled by the corresponding
zeros of sin(�z). So the singular points that need attention are the positive integers.
Recall from sectionV.3 (about the argument principle) that if a function has a simple zero
at a point, then the logarithmic derivative has a simple pole at the point and residue 1;
and if a function has a simple pole at a point, then the logarithmic derivative has a simple
pole at the point and residue −1. Accordingly, the logarithmic derivative of the quotient
of Gamma functions has a simple pole at each positive integer n and residue (−1)n. These
simple poles are canceled by the remaining zeros of sin(�z), so all the singularities of F
are removable.
The knowledge of the residues at these simple poles of the logarithmic derivative reveals
that when n is a positive integer,

lim
z→n

F (z) = lim
z→n

Γ(z) sin(�z)
�

(

(−1)n

z − n
+ analytic

)

= Γ(n) cos(�n)(−1)n = Γ(n).

Thus F and Γ have the same values at the positive integers, as required.

Remark 1. You could alternatively study the behavior of F at the positive integers
by bringing in the definition of the Gamma function as an infinite product:

Γ
(

1
2
− z

2

)

Γ
(

1 − z
2

) =
exp

(

−
(

1
2
− z

2

))

exp
(

−
(

1 − z
2

)) ⋅
1 − z

2
1
2
− z

2

⋅

∞
∏

n=1

(

1 +
1
2−

z
2

n

)−1

exp
(

1
2−

z
2

n

)

∞
∏

n=1

(

1 +
1− z

2

n

)−1
exp

(

1− z
2

n

)

.

The logarithmic derivative of this expression equals

1
z − 2

− 1
z − 1

+
∞
∑

n=1

(

−1
z − (2n + 1)

− 1
2n

)

−
∞
∑

n=1

(

−1
z − (2n + 2)

− 1
2n

)

,
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which simplifies to
∞
∑

n=1

(

1
z − 2n

− 1
z − (2n − 1)

)

.

Notice that the summands need to be grouped as shown to ensure convergence of the
series. The upshot is that when z is not an integer,

F (z) =
Γ(z) sin(�z)

�

∞
∑

n=1

(

1
z − 2n

− 1
z − (2n − 1)

)

.

This expression for F again reveals that the singularities of F are removable and that
F (n) = Γ(n) when n is a positive integer.

Remark 2. The function F does not satisfy the same functional equation as Γ.
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