
Math 618 Theory of Functions of a Complex Variable II
Final Examination

Spring 2019

Part A

State three of the following theorems from the course.

1. The Riemann mapping theorem.

2. The Weierstrass factorization theorem for entire functions.

3. Montel’s theorem about locally bounded families of holomorphic functions.

4. Runge’s theorem about polynomial approximation.

5. Picard’s great theorem about essential singularities.

Solution. See the textbook or the lecture notes for the statements of the theorems.

Part B

Choose three of the following items. For each item, either construct an example satisfying
the stated conditions or prove that no example exists (whichever is appropriate).

6. An analytic function f in the unit disk such that |Re f (z) − Im f (z)| is bounded but
|Re f (z)| is unbounded.

Solution. The Riemann mapping theorem provides an analytic bijection from the
unit disk to the strip {w ∈ ℂ ∶ Re(w)−� < Im(w) < Re(w)+� }. (You can replace
the number � by your favorite positive number.) So the required function exists.

An explicit formula for f (z) is (1 + i) log 1 − z
1 + z

. Indeed, the linear fractional map
1 − z
1 + z

sends the unit disk to the right-hand half-plane. The principal branch of the
logarithm maps the right-hand half-plane to a horizontal strip of width �. The factor
of 1 + i stretches and rotates the strip into the desired one.
More generally, an analytic function mapping the unit disk onto an unbounded subset
of the strip will do. An example of such a function is (1 + i) log(1 − z).
Alternatively, you might map the unit disk onto a half strip. Recall from an exercise
in Math 617 that the sine function maps the half-strip {w ∈ ℂ ∶ |Rew| < �∕2 and
Imw > 0 } biholomorphically onto the upper half-plane. And the linear fractional
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map i ⋅ 1 − z
1 + z

takes the unit disk to the upper half-plane. So (1 + i) sin−1
(

i ⋅ 1 − z
1 + z

)

is another solution to the problem.

7. A meromorphic function on ℂ having zeros at the odd positive integers, poles at the
even positive integers, and no other zeros or poles.

Solution. The Weierstrass factorization theorem makes it possible to write down
an infinite product representing an entire function f1 having zeros precisely at the
odd positive integers and another infinite product representing an entire function f2
having zeros precisely at the even positive integers. The quotient f1∕f2 solves the
problem.
A more concise solution is available as an application of the knowledge that the
reciprocal of the Gamma function is an entire function having zeros precisely at the
nonpositive integers. Hence the quotient

Γ
(2 − z

2

)

Γ
(1 − z

2

)

solves the problem.

8. A sequence {pn}∞n=1 of polynomials such that lim sup
n→∞

|pn(z)|1∕n is finite when |z| < 1

but discontinuous when z = 0.

Solution. The simplest solution is to set pn(z) equal to z (the same function for
every n). Since

lim
n→∞

|z|1∕n =

{

0, when z = 0,
1, when 0 < |z| < 1,

the requirement of the problem is met.

Remark. The example shows that the upper envelope of a family of subharmonic
functions can fail to be subharmonic by failing to be upper semicontinuous.

9. A zero-free entire function of order 1∕2.
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Solution. No such function exists.
A zero-free entire function has the form eg for some entire function g. If eg has
finite order, then a special case of Hadamard’s factorization theorem implies that the
exponent g is a polynomial. The order of eg is then an integer, namely, the degree of
the polynomial g. So the order cannot be equal to 1∕2. See also Theorem XI.3.7 in
the textbook.

10. A sequence of harmonic functions mapping the unit disk into ℝ ⧵ {0} such that the
sequence fails to be normal in the extended sense.

Solution. No such sequence exists.
Indeed, a continuous real-valued function that is never equal to 0 must have a fixed
sign (by the intermediate-value theorem from real calculus). Accordingly, there is
either a subsequence consisting of positive functions or a subsequence consisting of
negative functions. In the second case, changing the sign reduces to the first case.
So there is no loss of generality in supposing that the original sequence consists of
positive harmonic functions. You showed in an exercise (submitted on April 2) that
the family of positive harmonic functions in the unit disk is normal in the extended
sense.
Alternatively, you could argue that since the disk is simply connected, each harmonic
function u on the disk is the real part of some analytic function f . Since the range
of f is connected and is disjoint from the imaginary axis, the range is a subset of
either the right-hand half-plane or the left-hand half-plane. Suppose without loss of
generality that the range lies in the right-hand half-plane.
Accordingly, the original sequence of harmonic functions gives rise to an associated
sequence of analytic functions having range contained in the right-hand half-plane.
You know from a problem on the midterm exam that this family of analytic functions
is normal in the extended sense. (You could instead invoke Montel’s fundamental
normality criterion.) But there is a subtlety to consider here: a sequence of analytic
functions might converge to ∞ without the sequence of real parts converging to ∞
(or converging at all).
One way to sidestep this difficulty is to consider not f but instead e−f , which has
range contained in the unit disk. The sequence of these exponential functions is
bounded, hence normal in the restricted sense: there is a subsequence converging
normally to an analytic function g. Taking the absolute value gives a subsequence
of functions of the form e−u converging normally to |g|.
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Since g is a normal limit of nowhere zero analytic functions, either g is nowhere
zero or g is identically zero (by Hurwitz’s theorem). In the first case, taking the real
logarithm shows that the subsequence of harmonic functions converges normally
to − log|g|. In the second case, the subsequence of harmonic functions converges
normally to +∞.
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