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1 Introduction
KarlWeierstrass (1815–1897), a giant of nineteenth-century analysis, took some steps toward
a theory of functions of several complex variables. The “Weierstrass preparation theorem”
and the “Weierstrass division theorem” are named after him. Themodern theory of complex
analysis in dimension 2 (and in higher dimensions) can reasonably be dated to the researches
of Friedrich (Fritz) Hartogs (1874–1943) in the first decade of the twentieth century.1 The so-
calledHartogs Phenomenon, a fundamental property unrecognized byWeierstrass, reveals a
dramatic difference between one-dimensional complex analysis andmultidimensional com-
plex analysis.
Some properties of holomorphic (complex analytic) functions, such as themaximumprin-

ciple, are essentially the same in all dimensions. The most striking parts of the higher-
dimensional theory are the features that differ from the one-dimensional theory.
Several complementary points of view illuminate the one-dimensional theory: power se-

ries expansions, integral representations, partial differential equations, and geometry. The
higher-dimensional theory reveals new phenomena from each point of view. This chapter
sketches some of the issues to be treated in detail later on.
A glance at the titles of articles listed inMathSciNet with primary classification number 32

(more than twenty-five thousand articles) or at postings in math.CV in the arXiv indicates
the broad scope of interaction between complex analysis and other parts of mathematics,
including algebra, functional analysis, geometry, mathematical physics, partial differential
equations, and probability. One of the goals of this exposition is to glimpse some of these
connections between different areas of mathematics.

1.1 A note on terminology
The unfortunate but standard name of the subject is “several complex variables” (abbreviated
sometimes as “SCV”). The objects of study, of course, are not the variables but the functions.
One might view the traditional terminology “several complex variables” as an elision of the
more exact phrase “functions of several complex variables.”

1A student of Alfred Pringsheim (1850–1941), Hartogs belonged to the Munich school of mathematicians.
Because of their Jewish heritage, both Pringsheim and Hartogs suffered greatly under the Nazi regime in
the 1930s. Pringsheim, a wealthy man, managed to buy his way out of Germany into Switzerland, where he
died at an advanced age. The situation for Hartogs, however, grew ever more desperate, and he ultimately
chose suicide rather than transportation to a death camp.
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1 Introduction
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In standard English, the common meaning of the word “several” is “more than two, but
not many.” In the setting of complex analysis, the big contrast is between functions of one
variable and functions of two (or more) variables, so “several” is not really the right word.
Nor will “multiple” or “many” fit the bill. One could conceivably say “functions of a plural
number of complex variables,” but this expression sounds weird.
The same problem exists in other languages. Both French and German use words equiva-

lent to “several” to express “several complex variables,” and Russian uses a word that trans-
lates as “many.” A grammatical feature common tomany languages is the inflection of nouns
according to whether they are singular or plural,2 yet there seems to be a paucity of words
meaning “an unspecified number greater than one.” Most terms conveying the notion of in-
definite plurality have the connotation of “more than two,” perhaps because every language
has a dedicated word for the notion of precisely two.3
In English legal jargon, theword “several” doesmean “two ormore.” Onemust accept that

this technical meaning holds also in complex analysis: “several” means “𝑛, where 𝑛 ≥ 2.”
The same principle applies to prefixes such as “multi” and “poly.”

2Some languages, such as ancient Greek and modern Arabic, adjust the form of nouns according to whether
they are singular, dual, or plural (in this context, meaning more than two).

3There is some debate about the extent to which numeration is innate in human culture. The aboriginal
Australian language Warlpiri is often cited as an example of a language having the counting system “one,
two, several, many.” But modern Warlpiri, influenced by contact with the outside world, does have a full
counting system.
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1 Introduction

1.2 Power series
A power series in one complex variable converges absolutely inside a certain disc4 and di-
verges outside the closure of the disc. But the convergence region for a power series in two
(or more) variables can have many different shapes (indeed, infinitely many). The largest
open set in ℂ2 in which the double series

∑∞
𝑛=0

∑∞
𝑚=0 𝑧

𝑛
1𝑧

𝑚
2 converges absolutely is the unit

bidisc { (𝑧1, 𝑧2) ∶ |𝑧1| < 1 and |𝑧2| < 1 }; the series
∑∞

𝑛=0 𝑧
𝑛
1𝑧

𝑛
2 converges in the unbounded

hyperbolic region where |𝑧1𝑧2| < 1.
The theory of one-dimensional power series bifurcates into the case of entire functions

(when the series has infinite radius of convergence) and the case of holomorphic functions
on the unit disc (when the series has a finite radius of convergence—which might as well
be normalized to the value 1). In dimensions greater than 1, the study of power series leads
to function theory on infinitely many different types of domains. A natural problem, to be
solved later, is to characterize the domains in ℂ𝑛 that are convergence domains for multi-
variable power series.
Exercise 1. Find a concrete power series whose domain of absolute convergence is the two-
dimensional unit ball { (𝑧1, 𝑧2) ∈ ℂ2 ∶ |𝑧1|2 + |𝑧2|2 < 1 }.
While studying double power series, Hartogs discovered that every function holomorphic

in a neighborhood of the boundary of the unit bidisc automatically extends to be holomor-
phic on the interior of the bidisc; a proof can be carried out by considering single-variable
Laurent series on slices. Thus, in dramatic contrast to the situation in one variable, there are
domains in ℂ2 on which all the holomorphic functions extend to a larger domain. A natu-
ral question, to be answered later, is to characterize the domains of holomorphy, that is, the
natural domains of existence of holomorphic functions.
The discovery of Hartogs shows additionally that holomorphic functions of several vari-

ables never have isolated singularities and never have isolated zeros, in contrast to the one-
variable case. Moreover, zeros (and singularities) must propagate either to infinity or to the
boundary of the domain on which the function is defined.

1.3 Integral representations
Theone-variableCauchy integral formula for a holomorphic function𝑓 on adomain bounded
by a simple closed curve 𝐶 says that5

𝑓(𝑧) = 1
2𝜋𝑖 ∫𝐶

𝑓(𝑤)
𝑤 − 𝑧 𝑑𝑤 for 𝑧 inside 𝐶.

4Researchers in the field of one-dimensional complex analysis usually use the spelling “disk,” and researchers
on higher-dimensional complex analysis traditionally use the spelling “disc.”

5A prerequisite for reading further is that you can supply precise hypotheses for validity of this statement.
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1 Introduction

A remarkable feature of this formula is that the kernel (𝑤 − 𝑧)−1 is both universal (inde-
pendent of the curve 𝐶) and holomorphic in the free variable 𝑧. There is no such formula
in higher dimensions! There are integral representations with a holomorphic kernel that
depends on the domain, and there is a universal integral representation with a kernel that
is not holomorphic. A huge literature addresses the problem of constructing and analyzing
integral representations for various special types of domains.
There is an iterated Cauchy integral formula, namely,

𝑓(𝑧1, 𝑧2) = ( 1
2𝜋𝑖)

2

∫
𝐶1

∫
𝐶2

𝑓(𝑤1, 𝑤2)
(𝑤1 − 𝑧1)(𝑤2 − 𝑧2)

𝑑𝑤1 𝑑𝑤2

for 𝑧1 in the region𝐷1 bounded by the simple closed curve𝐶1 and 𝑧2 in the region𝐷2 bounded
by the simple closed curve 𝐶2. But this formula is special to a product domain 𝐷1 × 𝐷2.
Moreover, the integration here is over only a small portion of the boundary of the region,
for the set 𝐶1 × 𝐶2 (the “distinguished boundary”) has real dimension 2, but the topological
boundary of 𝐷1 × 𝐷2 has real dimension 3. The iterated Cauchy integral is important and
useful within its limited realm of applicability.
Exercise 2. Show that a function represented by the iterated Cauchy integral on the bidisc
can be expanded inside the bidisc in an absolutely convergent double power series.

1.4 Partial differential equations
The Cauchy–Riemann equations for functions of one complex variable are a pair of real par-
tial differential equations for a pair of real functions (namely, the real part and the imag-
inary part of a holomorphic function). In ℂ𝑛, there are still two functions (the real part
and the imaginary part), but there are 2𝑛 equations (two equations for each of the 𝑛 com-
plex variables). Thus when 𝑛 > 1, the inhomogeneous Cauchy–Riemann equations form
an overdetermined system; there is a necessary compatibility condition for solvability of the
Cauchy–Riemann equations. This feature is a significant difference from the one-variable
theory.
When the inhomogeneous Cauchy–Riemann equations are solvable in ℂ2 (or in ℂ𝑛 for

some value of 𝑛 larger than 1), there is (as will be shown later) a solution with compact sup-
port in the case of compactly supported data. When 𝑛 = 1, however, it is not always possible
to solve the inhomogeneous Cauchy–Riemann equations while maintaining compact sup-
port. The Hartogs phenomenon can be interpreted as one manifestation of this dimensional
difference.
Exercise 3. Show that if 𝑢 is the real part of a holomorphic function of two complex variables
𝑧1 (= 𝑥1 + 𝑖𝑦1) and 𝑧2 (= 𝑥2 + 𝑖𝑦2), then the function 𝑢 must satisfy the following system of
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1 Introduction

real second-order partial differential equations:

𝜕2𝑢
𝜕𝑥21

+ 𝜕2𝑢
𝜕𝑦21

= 0, 𝜕2𝑢
𝜕𝑥1𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦1𝜕𝑦2

= 0,

𝜕2𝑢
𝜕𝑥22

+ 𝜕2𝑢
𝜕𝑦22

= 0, 𝜕2𝑢
𝜕𝑥1𝜕𝑦2

− 𝜕2𝑢
𝜕𝑦1𝜕𝑥2

= 0.

In other words, the real part of a holomorphic function of two complex variables not only is
harmonic in each coordinate but also satisfies additional conditions that see an interaction
between the two variables.

1.5 Geometry
The one-variable Riemann mapping theorem says that every simply connected planar do-
main other than ℂ itself is biholomorphically equivalent to the unit disc. In higher dimen-
sion, no purely topological classification of biholomorphically equivalent domains can exist.
Indeed, the unit ball in ℂ2 and the unit bidisc in ℂ2 are holomorphically inequivalent do-
mains (as will be proved later).
An intuitive way to understand why the situation changes in dimension 2 is to realize that

inℂ2, there is room for one-dimensional complex analysis to take place in the tangent space
to the boundary of a domain. Indeed, the boundary of the bidisc contains pieces of one-
dimensional affine complex subspaces, but the boundary of the two-dimensional ball does
not contain any nontrivial analytic disc (the image of the unit disc under a holomorphic
mapping).
Similarly, there is room for complex analysis to happen inside the zero set of a holomorphic

function fromℂ2 toℂ1. The zero set of a function such as 𝑧1𝑧2 is a one-dimensional complex
variety insideℂ2. From this point of view, the reason that zeros of one-variable holomorphic
functions are isolated is that the zero set of a nontrivial holomorphic function from ℂ1 to ℂ1

is a zero-dimensional variety (namely, a discrete set of points).
Notice that there is a mismatch between the dimension of the domain and the dimension

of the range of a multivariable holomorphic function. Accordingly, one might expect the
right analogue of a holomorphic function from ℂ1 to ℂ1 to be an equidimensional holomor-
phicmapping from ℂ𝑛 to ℂ𝑛. But here too there are surprises.
First of all, notice that biholomorphic mappings in dimension 2 (and higher) generally

are not conformal (that is, angle-preserving). Even a linear transformation of ℂ2, such as
the mapping that sends (𝑧1, 𝑧2) to (𝑧1 + 𝑧2, 𝑧2), can change the angles at which lines meet.6
Although conformal maps are plentiful in the setting of one complex variable, conformality
is a quite rigid property in higher dimensions. A theorem of Joseph Liouville (1809–1882)

6Accordingly, biholomorphic mappings used to be called “pseudoconformal” mappings, but this word has
gone out of fashion.
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says7 that when 𝑛 ≥ 3, the only conformal mappings from a domain in ℝ𝑛 into ℝ𝑛 are the
(restrictions of) Möbius transformations: compositions of translations, dilations, orthogonal
linear transformations, and inversions.
Remarkably, there exist biholomorphic mappings from all ofℂ2 onto proper subsets ofℂ2.

There is active current research on such mappings, called Fatou–Bieberbach maps.8

7In 1850, Liouville published a fifth edition ofApplication de l’analyse à la géométrie byGaspardMonge (1746–
1818). An appendix includes seven long notes by Liouville. The sixth of these notes, bearing the title “Exten-
sion au cas des trois dimensions de la question du tracé géographique” and extending over pages 609–616,
contains the proof of the theorem in dimension 3.
Two sources for modern treatments of this theorem are Chapters 5–6 of David E. Blair’s Inversion Theory

and Conformal Mapping [American Mathematical Society, 2000]; and Theorem 5.2 of Chapter 8 of Man-
fredo Perdigão do Carmo’s Riemannian Geometry [Birkhäuser, 1992].

8The name recognizes constructions by the French mathematician Pierre Fatou (1878–1929), known also
for the Fatou lemma in the theory of the Lebesgue integral; and by the German mathematician Ludwig
Bieberbach (1886–1982), known also for the Bieberbach Conjecture about schlicht functions, posed in 1916
but proved much later (around 1984, by Louis de Branges). Bieberbach is infamous for having been an
enthusiastic member of the Nazi Party in the 1930s.
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2 Power series
Examples in the introduction show that domains of absolute convergence of multivariable
power series can have a variety of shapes; in particular, the domain of convergence need
not be a convex set. Nonetheless, there is a special kind of convexity property that does
characterize convergence domains.
Developing the theory requires some notation. The Cartesian product of 𝑛 copies ofℂ, the

complex numbers, is denoted by ℂ𝑛. In contrast to the one-dimensional case, the space ℂ𝑛

is not an algebra when 𝑛 > 1 (there is no multiplication operation). But the space ℂ𝑛 is a
normed vector space, the usual norm being the Euclidean one:

‖(𝑧1,… , 𝑧𝑛)‖ =
√
|𝑧1|2 +⋯ + |𝑧𝑛|2 .

A point (𝑧1,… , 𝑧𝑛) in ℂ𝑛 is commonly denoted by a single letter 𝑧, a vector variable. When
𝛼 is an 𝑛-dimensional vector all of whose coordinates are nonnegative integers, the symbol
𝑧𝛼 means the product 𝑧𝛼11 ⋯ 𝑧𝛼𝑛𝑛 (the quantity 𝑧𝛼11 being interpreted as 1 when 𝑧1 and 𝛼1 are
simultaneously equal to 0). The notation𝛼! abbreviates the product𝛼1!⋯𝛼𝑛! (where 0! = 1),
and |𝛼|means 𝛼1+⋯+𝛼𝑛. Thus |𝛼| is the “total degree” of themonomial 𝑧𝛼. In this “multi-
index” notation, a multivariable power series can be written in the form

∑
𝛼 𝑐𝛼𝑧

𝛼, which is
an abbreviation for

∑∞
𝛼1=0

⋯
∑∞

𝛼𝑛=0
𝑐𝛼1,…,𝛼𝑛𝑧

𝛼1
1 ⋯ 𝑧𝛼𝑛𝑛 .

There is some awkwardness in talking about convergence of a multivariable power series∑
𝛼 𝑐𝛼𝑧

𝛼, because the value of a series depends (in general) on the order of summation, and
there is no canonical ordering of 𝑛-tuples of nonnegative integers when 𝑛 > 1.
Exercise 4. When 𝑛 = 2, find complex numbers 𝑏𝛼 such that the “square” sum

lim
𝑘→∞

𝑘∑

𝛼1=0

𝑘∑

𝛼2=0
𝑏𝛼

and the “triangular” sum

lim
𝑘→∞

𝑘∑

𝑗=0

∑

|𝛼|=𝑗
𝑏𝛼

have distinct finite values. (There is no power series in this exercise, but merely a series of
complex numbers.)
Accordingly, it is convenient to restrict attention to absolute convergence, since the terms of
an absolutely convergent series can be reordered arbitrarily without changing the value of
the sum (or the convergence of the sum).

7



2 Power series

2.1 Domain of convergence
The domain of convergence of a power series means the interior of the set of points at which
the series converges absolutely (that is, the largest open set on which the series converges
absolutely). For example, the power series

∑∞
𝑛=1 𝑧

𝑛
1𝑧

𝑛!
2 converges absolutely on the union of

three sets in ℂ2: the points (𝑧1, 𝑧2) for which |𝑧2| < 1 and 𝑧1 is arbitrary; the points (0, 𝑧2)
for arbitrary 𝑧2; and the points (𝑧1, 𝑧2) for which |𝑧2| = 1 and |𝑧1| < 1. The domain of
convergence is the first of these three sets, for the other two sets contribute no additional
interior points.
Being defined by absolute convergence, every convergence domain is multicircular: if a

point (𝑧1,… , 𝑧𝑛) lies in the domain, then so does the point (𝜆1𝑧1,… , 𝜆𝑛𝑧𝑛) when 1 = |𝜆1| =
⋯ = |𝜆𝑛|. Moreover, the comparison test for absolute convergence of series shows that the
point (𝜆1𝑧1,… , 𝜆𝑛𝑧𝑛) remains in the convergence domain when |𝜆𝑗| ≤ 1 for each 𝑗. Thus
every convergence domain can be expressed as a union of polydiscs centered at the origin. (A
polydisc means a Cartesian product of discs, possibly with different radii.)
Multicircular domains are often called Reinhardt domains. The name honors the German

mathematician Karl Reinhardt1 (1895–1941). A Reinhardt domain is said to be complete if
whenever a point 𝑧 lies in the domain, the whole polydisc {𝑤 ∶ |𝑤1| ≤ |𝑧1|, . . . , |𝑤𝑛| ≤ |𝑧𝑛| }
is contained in the domain. The conclusion of the preceding paragraph can be rephrased as
saying that every convergence domain is a complete Reinhardt domain.
Convergence domains have an additional important property. If

∑
𝛼|𝑐𝛼𝑧

𝛼| converges, and∑
𝛼|𝑐𝛼𝑤

𝛼| converges too, then Hölder’s inequality implies that
∑

𝛼|𝑐𝛼||𝑧
𝛼|𝑡|𝑤𝛼|1−𝑡 converges

when 0 ≤ 𝑡 ≤ 1. Indeed, the numbers 1∕𝑡 and 1∕(1 − 𝑡) are conjugate indices for Hölder’s
inequality: the sum of their reciprocals evidently equals 1. Phrased in words, this deduction
fromHölder’s inequality says that if two points 𝑧 and𝑤 lie in a convergence domain, then so
does the point obtained by forming in each coordinate the geometric average of the moduli,
with weights 𝑡 and 1− 𝑡. This property of a Reinhardt domain is called logarithmic convexity.
Since a convergence domain is complete and multicircular, the domain is determined by the
points with positive real coordinates; replacing the coordinates of each such point by their
logarithms produces a convex domain in ℝ𝑛.
A special case of little practical importance is the empty set, which vacuously is complete

and logarithmically convex. The series
∑∞

𝑛=1 𝑛! 𝑧
𝑛
1𝑧

𝑛
2 converges on no subset of ℂ

2 having

1A student of Ludwig Bieberbach (who solved the first part of Hilbert’s 18th problem in 1910), Reinhardt has
a place in mathematical history for solving the second part of Hilbert’s 18th problem in 1928: he found a
polyhedron that tiles three-dimensional Euclidean space but is not the fundamental domain of any group
of isometries of ℝ3. In other words, there is no group of motions such that the orbit of the polyhedron
under the group covers ℝ3, yet non-overlapping isometric images of the tile do cover ℝ3. Later, Heinrich
Heesch (1906–1995) found a two-dimensional example; Heesch is remembered too for developing computer
methods to attack the four-color problem.
The date of Reinhardt’s death does not mean that he was a war casualty: his obituary says to the contrary

that he died after a long illness of unspecified nature. The University of Greifswald, where Reinhardt was a
professor, is one of the oldest universities in Europe, having been founded in 1456. Located in northeastern
Germany on the Baltic Sea, the city of Greifswald is a sister city of Bryan–College Station.

8
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2 Power series

Karl Reinhardt

source: obituary

Greifswald

source: worldatlas.com

interior points, so the empty set is a convergence domain.

2.2 Characterization of domains of convergence
According to Section 2.1, every convergence domain is necessarily a Reinhardt domain that is
both complete and logarithmically convex. The following theorem, obtained independently
when 𝑛 = 2 by Faber2 and by Hartogs3 in their respective habilitation theses,4 states that this
geometric property characterizes domains of convergence of power series.

Theorem 1. A complete Reinhardt domain in ℂ𝑛 is the domain of convergence of some power
series

∑
𝛼 𝑐𝛼𝑧

𝛼 if and only if the domain is logarithmically convex.

Exercise 5. If 𝐷1 and 𝐷2 are convergence domains, are the intersection 𝐷1 ∩ 𝐷2, the union
𝐷1 ∪ 𝐷2, and the Cartesian product 𝐷1 × 𝐷2 necessarily convergence domains too?

Proof of Theorem 1. When 𝑛 = 1, the equivalence is a triviality. A complete Reinhardt do-
main in ℂ1 is either a disc or the whole plane, hence is automatically logarithmically con-
vex. Moreover, discs are convergence regions for geometric series, and the whole plane is the
2Georg Faber, Über die zusammengehörigen Konvergenzradien von Potenzreihen mehrerer Veränderlicher,
Mathematische Annalen 61 (1905) 289–324. Faber (1877–1966) and Hartogs were PhD students of Alfred
Pringsheim in Munich at the same time. Faber graduated in 1902, one year ahead of Hartogs, and went off
to Würzburg. Faber’s paper was finished in late 1904 and published in 1905.

3Fritz Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbeson-
dere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschre-
iten, Mathematische Annalen 62 (1906) 1–88. This paper was finished in January 1905 and published in
1906. In a note added in page proof, Hartogs acknowledges the work of Faber, which had not yet appeared
when Hartogs submitted his article. Both papers contain much more than the indicated theorem, and the
two articles have a large symmetric difference.

4The habilitation, traditional in Europe, is a step beyond the doctoral dissertation.
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2 Power series

convergence region for any entire function, such as 𝑒𝑧. Thus the two properties to be shown
equivalent are universally satisfied for complete Reinhardt domains in ℂ1. The following
discussion therefore assumes implicitly that 𝑛 ≥ 2.
The part needing proof is the sufficiency: for every complete and logarithmically convex

Reinhardt domain 𝐷, there exists some power series
∑

𝛼 𝑐𝛼𝑧
𝛼 whose domain of convergence

is precisely 𝐷. The idea is to construct a power series that can be compared to a suitable
geometric series.
Suppose first that the domain 𝐷 is bounded (and nonvoid), for the construction is simpler

to implement in this case. Let𝑁𝛼(𝐷) denote sup{ |𝑧𝛼| ∶ 𝑧 ∈ 𝐷 }, the supremumnorm on𝐷 of
the monomial with exponent 𝛼. The quantity 𝑁𝛼(𝐷) is finite under the hypothesis that 𝐷 is
bounded. The claim now is that

∑
𝛼 𝑧

𝛼∕𝑁𝛼(𝐷) is the required power series whose domain of
convergence is equal to 𝐷. What needs to be checked is that for each point 𝑤 inside 𝐷, the
series converges absolutely at 𝑤, and for each point 𝑤 outside 𝐷, there is no neighborhood
of 𝑤 throughout which the series converges absolutely.
If 𝑤 is a particular point in the interior of 𝐷, then there is a positive 𝜀 (depending on 𝑤)

such that the scaled point (1 + 𝜀)𝑤 still lies in 𝐷. Therefore (1 + 𝜀)|𝛼||𝑤𝛼| ≤ 𝑁𝛼(𝐷), so the
series

∑
𝛼 𝑤

𝛼∕𝑁𝛼(𝐷) converges absolutely by comparison with the convergent dominating
series

∑
𝛼(1 + 𝜀)

−|𝛼| (which is a product of 𝑛 copies of
∑∞

𝑘=0(1 + 𝜀)
−𝑘, a convergent geometric

series). Thus the first requirement is met.
Checking the second requirement involves showing that the series diverges at sufficiently

many points outside 𝐷. The following argument demonstrates that
∑

𝛼 𝑤
𝛼∕𝑁𝛼(𝐷) diverges

whenever 𝑤 is a point outside the closure of 𝐷 whose coordinates are positive real numbers.
Since the domain 𝐷 is multicircular, this conclusion suffices. The strategy is to show that
infinitely many terms of the series are greater than 1.
The hypothesis that 𝐷 is logarithmically convex means precisely that the set

{ (𝑢1,… , 𝑢𝑛) ∈ ℝ𝑛 ∶ (𝑒𝑢1 ,… , 𝑒𝑢𝑛) ∈ 𝐷 }, denoted by log𝐷,

is a convex set inℝ𝑛. By assumption, the point (log𝑤1,… , log𝑤𝑛) is a point ofℝ𝑛 outside the
closure of the convex set log𝐷, so this point is separated from log𝐷 by a hyperplane. In other
words, there is a linear function 𝓁∶ ℝ𝑛 → ℝ whose value at the point (log𝑤1,… , log𝑤𝑛)
exceeds the supremumof𝓁 over the convex set log𝐷. (In particular, that supremum is finite.)
Say 𝓁(𝑢1,… , 𝑢𝑛) = 𝛽1𝑢1 +⋯ + 𝛽𝑛𝑢𝑛, where each coefficient 𝛽𝑗 is a real number.
Every complete Reinhardt domain contains a neighborhood of the origin in ℂ𝑛, so there

is a positive real constant 𝑚 such that the convex set log𝐷 contains every point 𝑢 in ℝ𝑛 for
which max1≤𝑗≤𝑛 𝑢𝑗 ≤ −𝑚. Therefore none of the numbers 𝛽𝑗 is negative, for otherwise the
function 𝓁would take arbitrarily large positive values on the set log𝐷. The assumption that
𝐷 is bounded guarantees the existence of a positive real constant𝑀 such thatmax1≤𝑗≤𝑛 𝑢𝑗 ≤
𝑀 whenever 𝑢 ∈ log𝐷. Consequently, if each number 𝛽𝑗 is increased by some small positive
amount 𝜀, then the supremum of 𝓁 over log𝐷 increases by nomore than 𝑛𝑀𝜀. Therefore the
coefficients of the linear function𝓁 can be perturbed slightly without affecting the separating
property of 𝓁. Accordingly, there is no loss of generality in assuming that each 𝛽𝑗 is a positive
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rational number. Multiplying by a common denominator shows that the coefficients 𝛽𝑗 can
be taken to be positive integers.
Exponentiating reveals that 𝑤𝛽 > 𝑁𝛽(𝐷) for the particular multi-index 𝛽 just determined.

(Since the coordinates of𝑤 are positive real numbers, no absolute-value signs are needed on
the left-hand side of the inequality.) Consequently, if 𝑘 is a positive integer, and 𝑘𝛽 denotes
the multi-index (𝑘𝛽1,… , 𝑘𝛽𝑛), then 𝑤𝑘𝛽 > 𝑁𝑘𝛽(𝐷). Therefore the series

∑
𝛼 𝑤

𝛼∕𝑁𝛼(𝐷) of
positive numbers diverges, for there are infinitely many terms larger than 1. This conclusion
completes the proof of the theorem when the domain 𝐷 is bounded.
When𝐷 is unbounded, let𝐷𝑟 denote the intersection of𝐷with the ball of radius 𝑟 centered

at the origin. Then𝐷𝑟 is a bounded, complete, logarithmically convexReinhardt domain, and
the preceding analysis applies to𝐷𝑟. The natural idea of splicing together power series of the
type just constructed for an increasing sequence of values of 𝑟 is too simplistic, for none of
these series converges throughout the unbounded domain 𝐷.
One way to finish the argument is to invoke a theorem of Heinrich Behnke (1898–1979)

and his student Karl Stein (1913–2000), usually called the Behnke–Stein theorem, according
to which an increasing union of domains of holomorphy is again a domain of holomorphy.5
A coming attraction (see Section 2.5) is to prove that a convergence domain for a power
series supports some (other) power series that cannot be analytically continued across any
boundary point whatsoever. Hence each 𝐷𝑟 is a domain of holomorphy, so the Behnke–
Stein theorem implies that 𝐷 is a domain of holomorphy. Accordingly, 𝐷 supports some
holomorphic function that cannot be analytically continued across any boundary point of𝐷.
This holomorphic function is represented by a power series that converges in all of 𝐷, and

5H. Behnke and K. Stein, Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität,
Mathematische Annalen 116 (1938) 204–216. Stein is the eponym of so-called Stein manifolds. After the
war, Behnke had several other notable students who became prominent mathematicians, including Hans
Grauert (1930–2011), Friedrich Hirzebruch (1927–2012), and Reinhold Remmert (1930–2016).
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2 Power series

𝐷 is the convergence domain of this power series.
The discussion in the preceding paragraph is unsatisfying: besides being anachronistic and

not self-contained, the argument provides no concrete construction of the required power
series. What follows is a modification of the construction for bounded domains that makes
the argument work for unbounded domains too.
Replace 𝑁𝛼(𝐷) by the quantity𝑀𝛼(𝐷) defined as

sup{ |𝑧𝛼| 𝑒−(|𝑧1|+⋯+|𝑧𝑛|) ∶ 𝑧 ∈ 𝐷 }. (2.1)

The decaying exponential factor guarantees that𝑀𝛼(𝐷) is finite for eachmulti-index 𝛼, even
when the domain 𝐷 is unbounded. The claim now is that the series

∑
𝛼 𝑧

𝛼∕𝑀𝛼(𝐷) has the
logarithmically convex, complete Reinhardt domain 𝐷 as domain of convergence.
When𝑤 ∈ 𝐷, the proof that

∑
𝛼 |𝑤

𝛼|∕𝑀𝛼(𝐷) converges is basically the same as in the case
of bounded domains. Indeed, there is a positive 𝜀 such that the dilated point (1 + 𝜀)𝑤 ∈ 𝐷,
and

(1 + 𝜀)|𝛼||𝑤𝛼| 𝑒−(1+𝜀)(|𝑤1|+⋯+|𝑤𝑛|) ≤ 𝑀𝛼(𝐷).

The exponential factor is independent of𝛼, so
∑

𝛼|𝑤
𝛼|∕𝑀𝛼(𝐷) converges by comparisonwith

the convergent geometric series
∑

𝛼(1 + 𝜀)−|𝛼|.
Next suppose that 𝑤 is a point outside 𝐷 whose coordinates are positive real numbers.

The following argument shows that there are infinitely many choices of the multi-index 𝛼
for which

𝑤𝛼∕𝑀𝛼(𝐷) ≥
𝑛∏

𝑗=1
min(1, 𝑤𝑗).

Since the right-hand side is positive and independent of 𝛼, the series
∑

𝛼 𝑤
𝛼∕𝑀𝛼(𝐷) diverges.

The first step is the same as in the case of bounded domains. The logarithmic convexity
of 𝐷 implies the existence of a vector (𝛽1,… , 𝛽𝑛) of nonnegative real numbers (at least one of
them different from 0) such that

𝑛∏

𝑗=1
|𝑧𝑗|𝛽𝑗 ≤

𝑛∏

𝑗=1
𝑤𝛽𝑗
𝑗 whenever 𝑧 ∈ 𝐷. (2.2)

The inequality evidently still holdswhen the vector (𝛽1,… , 𝛽𝑛) is replaced by (𝑘𝛽1,… , 𝑘𝛽𝑛) for
an arbitrary positive integer 𝑘 (or even by an arbitrary positive real number). But a difficulty
arises in the unbounded case, for a small perturbation of the exponents could destroy the
inequality. If log𝐷 is the region on one side of a hyperplane, for example, then the vector
(𝛽1,… , 𝛽𝑛) can only be a multiple of the normal vector to that hyperplane. So it may not be
possible to replace the exponents with rational numbers, let alone integers.
The following device overcomes this difficulty by introducing integer exponents in a new

way. When 𝑥 is a real number, the notation ⌈𝑥⌉means the ceiling of 𝑥, that is, the least integer
greater than or equal to 𝑥. If 𝛾 is a real number between 0 and 1, and 𝑥 is nonnegative, then
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𝑥𝛾𝑒−𝑥 ≤ (1 + 𝑥)𝛾𝑒−𝑥 ≤ (1 + 𝑥)𝑒−𝑥 ≤ 1. Applying this inequality with 𝑥 equal to |𝑧𝑗| and
𝛾 equal to ⌈𝛽𝑗⌉ − 𝛽𝑗 shows that

|𝑧𝑗|⌈𝛽𝑗⌉−𝛽𝑗 𝑒−|𝑧𝑗| ≤ 1, or |𝑧𝑗|⌈𝛽𝑗⌉ 𝑒−|𝑧𝑗| ≤ |𝑧𝑗|𝛽𝑗 .

Substituting into (2.2) yields that

(
𝑛∏

𝑗=1
|𝑧𝑗|⌈𝛽𝑗⌉)𝑒−(|𝑧1|+⋯+|𝑧𝑛|) ≤

𝑛∏

𝑗=1
𝑤𝛽𝑗
𝑗 whenever 𝑧 ∈ 𝐷. (2.3)

Moreover, 𝑤⌈𝛽𝑗⌉
𝑗 = 𝑤⌈𝛽𝑗⌉−𝛽𝑗

𝑗 𝑤𝛽𝑗
𝑗 ≥ min(1, 𝑤𝑗)⌈𝛽𝑗⌉−𝛽𝑗𝑤

𝛽𝑗
𝑗 ≥ min(1, 𝑤𝑗)𝑤

𝛽𝑗
𝑗 , so (2.3) implies that

(
𝑛∏

𝑗=1
|𝑧𝑗|⌈𝛽𝑗⌉)𝑒−(|𝑧1|+⋯+|𝑧𝑛|) ≤

∏𝑛
𝑗=1𝑤

⌈𝛽𝑗⌉
𝑗

∏𝑛
𝑗=1min(1, 𝑤𝑗)

whenever 𝑧 ∈ 𝐷.

Consequently, if𝛼 equals themulti-index (⌈𝛽1⌉,… , ⌈𝛽𝑛⌉), then𝑤𝛼∕𝑀𝛼(𝐷) ≥
∏𝑛

𝑗=1min(1, 𝑤𝑗).
The same conclusion holds when 𝛼 equals (⌈𝑘𝛽1⌉,… , ⌈𝑘𝛽𝑛⌉), where 𝑘 is an arbitrary posi-

tive integer. Therefore the series
∑

𝛼 𝑤
𝛼∕𝑀𝛼(𝐷) diverges, since infinitely many of the terms

exceed a fixed positive number. This deduction completes the proof that 𝐷 is the domain of
convergence of the series

∑
𝛼 𝑧

𝛼∕𝑀𝛼(𝐷).
In summary, every complete and logarithmically convex Reinhardt domain—bounded or

unbounded—is the domain of convergence of some power series, and a suitable series can
be written down concretely.6

Exercise 6. Every bounded, complete Reinhardt domain in ℂ2 can be described as the set of
points (𝑧1, 𝑧2) for which

|𝑧1| < 𝑟 and |𝑧2| < 𝑒−𝜑(|𝑧1|),

where 𝑟 is some positive real number, and 𝜑 is some nondecreasing, real-valued function.
Show that such a domain is logarithmically convex if and only if the function sending 𝑧1 to
𝜑(|𝑧1|) is a subharmonic function on the disk where |𝑧1| < 𝑟.
In solving this exercise, keep inmind the analogy between convex functions on the real line

and subharmonic functions on the plane.7 In the following remarks about these two classes
of functions, the symbol 𝑢 denotes a real-valued, upper semicontinuous function defined
either on an open interval in ℝ or on an open subset of ℂ (equivalently ℝ2).
6The original proofs of Faber and of Hartogs both involve choosing certain countable dense sets, so do not
represent the series as explicitly.

7A foreshadowing of this analogy predates the invention of subharmonic functions by many years. See pages
43–44 of an article by O. Hölder, Ueber einenMittelwerthssatz,Nachrichten von der KöniglichenGesellschaft
derWissenschaften und der Georg-Augusts-Universität zu Göttingen (1889) no. 2, 38–47. Page 44 of this paper
is where the German mathematician Otto Hölder (1859–1937) derived “Hölder’s inequality,” although he
points out that the inequality was previously obtained by L. J. Rogers, An extension of a certain theorem in
inequalities,Messenger of Mathematics 17 (1888) 145–150 (page 149).
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mean-value property A convex function has the property that the value at the midpoint
of each subinterval of the domain is at most the average of the values of the function
at the endpoints of the subinterval. In symbols, for every two points 𝑥1 and 𝑥2 in the
domain,

𝑢 (
𝑥1 + 𝑥2

2 ) ≤
𝑢(𝑥1) + 𝑢(𝑥2)

2 .

A subharmonic function has the property that for each closed disk in the domain of
the function, the value at the center of the disk is at most the average of the values of
the function around the boundary of the disk. In symbols, if the disk has center 𝑧0 and
radius 𝑟, then

𝑢(𝑧0) ≤
1
2𝜋 ∫

𝜋

−𝜋
𝑢(𝑧0 + 𝑟𝑒𝑖𝜃)𝑑𝜃.

weighted averages If 𝑥1 and 𝑥2 are points in the domain of a convex function 𝑢, and 0 <
𝑡 < 1, then

𝑢 (𝑡𝑥1 + (1 − 𝑡)𝑥2) ≤ 𝑡𝑢(𝑥1) + (1 − 𝑡)𝑢(𝑥2).
More generally, if 𝑥1, . . . , 𝑥𝑘 are points in the domain of a convex function 𝑢, and 𝑎1,
. . . , 𝑎𝑘 are positive numbers such that 𝑎1 +⋯ + 𝑎𝑛 = 1, then

𝑢 (𝑎1𝑥1 +⋯ + 𝑎𝑘𝑥𝑘) ≤ 𝑎1𝑢(𝑥1) +⋯ + 𝑎𝑘𝑢(𝑥𝑘).

This inequality for convex functions, due to Hölder,8 was rediscovered by the Danish
telephone engineer Johan Jensen9 (1859–1925). Still more generally, if 𝑎 is a positive
integrable function such that ∫ 1

0 𝑎(𝑥)𝑑𝑥 = 1, and 𝑓 is an integrable function, then

𝑢(∫
1

0
𝑎(𝑥)𝑓(𝑥)𝑑𝑥) ≤ ∫

1

0
𝑎(𝑥)𝑢(𝑓(𝑥))𝑑𝑥.

This statement is Jensen’s inequality.10 The modern formulation is that when 𝜈 is a
probability measure (total mass 1), and 𝑓 is an integrable function,

𝑢 (∫ 𝑓 𝑑𝜈) ≤ ∫ 𝑢(𝑓)𝑑𝜈.

In the setting of a disk, there is a natural weight whose integral over the boundary is
equal to 1, namely, the Poisson kernel. Integrating some function against the Poisson
kernel corresponds to forming a certain weighted average of the values of the function
on the boundary. A subharmonic function has the property that the value at a point
inside a disk is at most the value at the point of the Poisson integral of the boundary
value of the function.

8Announced on page 39 of Hölder’s previously cited paper, the inequality is the main result of that paper.
9J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica
30 (1906) 175–193. See page 180.

10See page 186 of the cited article of Jensen.
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maximum principle A geometric interpretation of the convexity inequality is that the graph
of a convex function lies below (or possibly on) each chord. An equivalent statement
is that if 𝓁 is an arbitrary affine linear function (that is, 𝓁(𝑥) has the form 𝑎𝑥+𝑏), then
the function 𝑢 − 𝓁 cannot have a (weak) local maximum unless 𝑢 − 𝓁 is constant in a
neighborhood of the point where the maximum occurs.
A subharmonic function has the parallel property that if 𝑣 is an arbitrary harmonic
function on an arbitrary disk contained in the domain of 𝑢, then the function 𝑢 − 𝑣
cannot have a (weak) local maximum in the disk unless 𝑢 − 𝑣 is constant in a neigh-
borhood of the point where the maximum occurs.

second derivatives If 𝑢 is twice continuously differentiable, then 𝑢 is convex if and only if
the second derivative of 𝑢 is nonnegative. Notice that functions with vanishing second
derivative are the comparison functions in the maximum principle for convexity.
If the function 𝑢 is twice continuously differentiable, then 𝑢 is subharmonic if and only
if the Laplacian of𝑢 is nonnegative. Notice that the functionswith vanishing Laplacian
are the comparison functions in the maximum principle for subharmonicity.

locality A function is convex on an open interval if and only if the function is convex on
some neighborhood of each point of the interval. A function is subharmonic on an
open set if and only if the function is subharmonic on a neighborhood of each point of
the open set.

continuity An upper semicontinuous convex function is automatically continuous.11 Now
the analogy breaks down: the corresponding statement for subharmonic functions is
not true. For instance, the function log |𝑧| is subharmonic on the whole planeℂ but is
not continuous at the origin.

Aside on infinite dimensions
The story changes when the finite-dimensional vector space ℂ𝑛 is replaced by an infinite-
dimensional space. Consider, for example, the power series

∑∞
𝑗=1 𝑧

𝑗
𝑗 depending on infinitely

many variables 𝑧1, 𝑧2, . . . . Where does this series converge?
Finitely many of the variables can be arbitrary, and the series will certainly converge if the

remaining variables have absolute value less than a fixed number smaller than 1. On the
other hand, the series will diverge if the variables do not eventually have absolute value less
than 1. In particular, in the product of countably infinitely many copies of ℂ, there is no
open set (with respect to the product topology) on which the series converges. (A basis for
open sets in the product topology consists of sets for which each of finitely many variables is
restricted to an open subset of ℂ, the remaining variables being unrestricted.) Holomorphic

11See page 189 of the cited article of Jensen.
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functions ought to live on open sets, so apparently this power series in infinitely many vari-
ables does not represent a holomorphic function, even though the series converges at many
points.
Perhaps an infinite-product space is not the right setting for this power series. The series

could be considered instead on the Hilbert space of sequences (𝑧1, 𝑧2,…) for which
∑∞

𝑗=1 |𝑧𝑗|
2

is finite. In this setting, the power series converges everywhere: the square-summability
implies that 𝑧𝑗 → 0when 𝑗 →∞, so |𝑧𝑗𝑗| eventually is dominated by 1∕2

𝑗. Similar reasoning
shows that the power series converges uniformly on every ball of radius less than 1 (with an
arbitrary center). Consequently, the series converges uniformly on every compact set. Yet
the power series fails to converge uniformly on the closed unit ball centered at the origin
(as follows by considering the standard unit basis vectors). In a finite-dimensional space,
a series that is everywhere absolutely convergent must converge uniformly on every ball of
every radius, but this convenient property breaks down when the dimension is infinite.
The preceding remarks indicate that the theory of holomorphic functions needs to be

rethought when the dimension is infinite.12 Two noteworthy changes in infinite dimension
are the existence of inequivalent norms (all norms on a finite-dimensional vector space are
equivalent) and the nonexistence of interior points of compact sets (closed balls are never
compact in infinite-dimensional Banach spaces).
Incidentally, the notion of convergence of infinite series in Banach spaces involves some

subtleties. In finite dimensions, the concepts of absolute convergence and unconditional
convergence are equivalent; when the dimension is infinite, absolute convergence implies
unconditional convergence but not conversely. For example, let 𝑒𝑛 denote the 𝑛th unit basis
element in the space of square-summable sequences (all entries of 𝑒𝑛 are equal to 0 except
the 𝑛th one, which equals 1), and consider the infinite series

∑∞
𝑛=1

1

𝑛
𝑒𝑛. This series converges

unconditionally (in other words, without regard to the order of summation) to the square-
summable sequence (1, 1

2
, 1
3
,…), yet the series fails to converge absolutely (since the sum of

the norms of the terms is the divergent harmonic series). A famous theorem13 due to Aryeh
Dvoretzky (1916–2008) and C. Ambrose Rogers (1920–2005) says that this phenomenon is
general: in every infinite-dimensional Banach space, there is an unconditionally convergent
series

∑∞
𝑛=1 𝑥𝑛 such that ‖𝑥𝑛‖ = 1∕𝑛 (whence the series fails to converge absolutely).

2.3 Local properties of holomorphic functions
Convergent power series are local models for holomorphic functions. Power series converge
uniformly on compact sets, so they represent continuous functions that are holomorphic in
each variable separately (when the other variables are held fixed). Thus a reasonableworking

12One book on the subject is JorgeMujica’sComplex Analysis in Banach Spaces, originally published by North-
Holland in 1986 and reprinted by Dover in 2010.

13A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proceed-
ings of the National Academy of Sciences of the United States of America 36 (1950) 192–197.

16

http://www.pnas.org/content/36/3/192.short
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definition of a holomorphic function of several complex variables is a function (on an open
set) that is holomorphic in each variable separately and continuous in all variables jointly.14
If 𝐷 is a polydisc in ℂ𝑛 with center at the origin and with polyradius (𝑟1,… , 𝑟𝑛), and if

𝑓 is holomorphic on a neighborhood of the closure of 𝐷, then iterating the one-dimensional
Cauchy integral formula shows that

𝑓(𝑧) = ( 1
2𝜋𝑖)

𝑛

∫
|𝑤1|=𝑟1

⋯ ∫
|𝑤𝑛|=𝑟𝑛

𝑓(𝑤1,… , 𝑤𝑛)
(𝑤1 − 𝑧1)⋯ (𝑤𝑛 − 𝑧𝑛)

𝑑𝑤1⋯𝑑𝑤𝑛

when the point 𝑧 with coordinates (𝑧1,… , 𝑧𝑛) is in the interior of the polydisc. The assumed
continuity of 𝑓 guarantees that this iterated integral makes sense and can be evaluated in
any order by Fubini’s theorem.
Expanding the Cauchy kernel in a geometric series, just as in the one-variable case, shows

that𝑓(𝑧) admits a power series expansion
∑

𝛼 𝑐𝛼𝑧
𝛼 that converges in the (open) polydisc. The

coefficient 𝑐𝛼 is uniquely determined as

( 1
2𝜋𝑖)

𝑛

∫
|𝑤1|=𝑟1

⋯ ∫
|𝑤𝑛|=𝑟𝑛

𝑓(𝑤1,… , 𝑤𝑛)

𝑤1+𝛼1
1 ⋯𝑤1+𝛼𝑛

𝑛

𝑑𝑤1⋯𝑑𝑤𝑛,

or equivalently𝑓(𝛼)(0)∕𝛼!, where the symbol𝑓(𝛼) abbreviates the derivative 𝜕|𝛼|𝑓∕𝜕𝑧𝛼11 ⋯ 𝜕𝑧𝛼𝑛𝑛 .
Placing the center of the polydisc at the origin is merely a notational convenience. If instead
the polydisc has center 𝜁, then the series expansion has the form

∑
𝛼 𝑐𝛼(𝑧 − 𝜁)𝛼, where now

𝑐𝛼 = 𝑓(𝛼)(𝜁)∕𝛼!.
Every complete Reinhardt domain is a union of concentric polydiscs, so the uniqueness of

the coefficients 𝑐𝛼 implies that every holomorphic function in a complete Reinhardt domain
admits a power series expansion that converges in the whole domain. Thus holomorphic
functions and convergent power series are identical notions in complete Reinhardt domains.
The iterated Cauchy integral formula can be used to establish the basic local properties of

holomorphic functions by the same arguments as in the single-variable case. For example,
holomorphic functions are infinitely differentiable, satisfy the Cauchy–Riemann equations
in each variable, and obey a local maximum principle. The multivariable Cauchy estimates
for derivatives say that if 𝑓 is holomorphic on a polydisc of polyradius (𝑟1,… , 𝑟𝑛), and if |𝑓|
is bounded above by a constant𝑀 in the polydisc, then

|𝑓(𝛼)(center)| ≤ 𝛼!𝑀
𝑟𝛼 .

Holomorphic functions of several variables satisfy an identity principle, but the statement
is different from the standard single-variable formulation. In dimension 1, an accumulation
point of zeros forces a holomorphic function to be identically zero, but in higher dimension,
zeros are never isolated. A statement valid in all dimensions is that if a holomorphic function
on a connected open set is identically equal to 0 on some (small) ball or polydisc, then the
14A remarkable theorem of Hartogs states that the continuity hypothesis is superfluous. See Section 2.7.
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function is identically equal to 0. To prove this statement via a connectedness argument,
consider one-dimensional slices to see that if a holomorphic function is identically equal
to 0 in a neighborhood of a point, then the function is identically equal to 0 in every polydisc
centered at the point and contained in the domain of the function. And every two points in
the domain can be joined by a chain of overlapping polydiscs.
The iterated Cauchy integral also implies that if a sequence of holomorphic functions

converges normally (uniformly on compact sets), then the limit function is holomorphic.
Indeed, the conclusion is a local property that can be checked on small polydiscs, and the
locally uniform convergence implies that the limit of the iterated Cauchy integrals equals the
iterated Cauchy integral of the limit function. On the other hand, the one-variable integral
that counts zeros inside a curve lacks an obvious multivariable analogue (since zeros are not
isolated), so a special argument is needed to verify that Hurwitz’s theorem generalizes from
one variable to several variables.
Exercise 7. Prove amultidimensional version ofHurwitz’s theorem: On a connected open set,
the normal limit of zero-free holomorphic functions is either zero-free or identically equal
to zero.

2.4 The Hartogs phenomenon
So far the power series under consideration have been Maclaurin series. Studying Laurent
series reveals a phenomenon of automatic analytic continuation, a discovery of Hartogs in
his 1903 dissertation.15

Theorem 2 (Hartogs). Suppose 𝑟 is a positive number less than 1. If 𝑓 is holomorphic in
{ (𝑧1, 𝑧2) ∈ ℂ2 ∶ |𝑧1| < 1 and 𝑟 < |𝑧2| < 1 } ∪ { (𝑧1, 𝑧2) ∶ |𝑧2| < 1 and 𝑟 < |𝑧1| < 1 }, then
𝑓 extends (uniquely) to be holomorphic on the unit bidisc, { (𝑧1, 𝑧2) ∶ |𝑧1| < 1 and |𝑧2| < 1 }.

The initial domain of definition of 𝑓 is a Reinhardt domain, but not a complete Reinhardt
domain. The theorem implies that if a function is holomorphic in a neighborhood of the
boundary of a bidisc, then the function extends to be holomorphic in the whole bidisc. The
result carries over to higher dimension with an analogous proof. Hartogs himself pointed
out the important corollary that holomorphic functions of two (or more) complex variables
cannot have isolated singularities.16

Proof. For each fixed 𝑧1 in the unit disc, the function sending 𝑧2 to 𝑓(𝑧1, 𝑧2) is holomorphic
in the annulus where 𝑟 < |𝑧2| < 1, so has a Laurent expansion valid in this annulus. In other

15Beiträge zur elementaren Theorie der Potenzreihen und der eindeutigen analytischen Funktionen zweier Verän-
derlichen, published in 1904 by Teubner. A scan of the publication can be found at Google Books. The
theorem appears in §17 (page 55).

16“Als spezieller Fall ergibt sich daraus ohne weiteres, daß eine eindeutige analytische Funktion 𝑓(𝑥, 𝑦) keine
isolierten singulären Stellen besitzen kann” [emphasis in original, page 55 of the dissertation].
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words, for each integer 𝑗 there is a coefficient 𝑐𝑗(𝑧1) such that

𝑓(𝑧1, 𝑧2) =
∞∑

𝑗=−∞
𝑐𝑗(𝑧1)𝑧

𝑗
2 when |𝑧1| < 1 and 𝑟 < |𝑧2| < 1. (2.4)

Moreover, 𝑐𝑗(𝑧1) has an integral representation. If 𝑠 is a radius such that 𝑟 < 𝑠 < 1, then

𝑐𝑗(𝑧1) =
1
2𝜋𝑖

∫
|𝑤2|=𝑠

𝑓(𝑧1, 𝑤2)

𝑤1+𝑗
2

𝑑𝑤2. (2.5)

When |𝑧1| < 1 and |𝑤2| = 𝑠, the function 𝑓(𝑧1, 𝑤2) is jointly continuous in both variables
and holomorphic in 𝑧1, so this integral representation shows (byMorera’s theorem, say) that
each coefficient 𝑐𝑗(𝑧1) is a holomorphic function of 𝑧1 in the unit disc.
But when 𝑟 < |𝑧1| < 1, the function sending 𝑧2 to 𝑓(𝑧1, 𝑧2) is holomorphic in the unit

disk, so the Laurent series (2.4) reduces to a Taylor series. In other words, if 𝑗 < 0, then
𝑐𝑗(𝑧1) is identically equal to 0 when 𝑟 < |𝑧1| < 1. By the one-variable identity theorem, the
holomorphic function 𝑐𝑗(𝑧1) remains identically 0 in the whole disc where |𝑧1| < 1. In other
words, the Laurent series (2.4) reduces to a Taylor series for every value of 𝑧1. This series, if
uniformly convergent on compact subsets of { (𝑧1, 𝑧2) ∶ |𝑧1| < 1 and |𝑧2| < 𝑠 }, defines the
required holomorphic extension of 𝑓.
To verify this normal convergence, fix an arbitrary compact subset𝐾 of the unit disc in the

space of the variable 𝑧1. The continuous function |𝑓(𝑧1, 𝑤2)| has some finite upper bound𝑀
on the compact set where 𝑧1 ∈ 𝐾 and |𝑤2| = 𝑠. Estimating the integral representation (2.5)
for the series coefficient shows that |𝑐𝑗(𝑧1)| ≤ 𝑀∕𝑠𝑗 when 𝑧1 ∈ 𝐾. Consequently, if 𝑡 is
an arbitrary positive number less than 𝑠, then the series

∑∞
𝑗=0 𝑐𝑗(𝑧1)𝑧

𝑗
2 converges absolutely

when 𝑧1 ∈ 𝐾 and |𝑧2| ≤ 𝑡 by comparisonwith the convergent geometric series
∑∞

𝑗=0𝑀(𝑡∕𝑠)𝑗.
Since the required locally uniform convergence holds, the series

∑∞
𝑗=0 𝑐𝑗(𝑧1)𝑧

𝑗
2 does define the

required holomorphic extension of 𝑓 to the whole bidisc.

The method can be adjusted to apply to more general geometry. Here is one example,
which is the basic version of what is sometimes called the Kugelsatz (“sphere theorem”) of
Hartogs.
Exercise 8. If 𝑟 is a positive radius less than 1, and𝑓 is a holomorphic function on the spherical
shell { (𝑧1, 𝑧2) ∈ ℂ2 ∶ 𝑟2 < |𝑧1|2 + |𝑧2|2 < 1 }, then 𝑓 extends to be a holomorphic function
on the whole unit ball.
The ultimate theorem of this type says that if 𝐷 is an open subset of ℂ𝑛, where 𝑛 ≥ 2,

and if 𝐾 is a compact subset of 𝐷 such that the set difference 𝐷 ⧵ 𝐾 is connected, and if 𝑓 is
holomorphic on 𝐷 ⧵ 𝐾, then 𝑓 extends to be holomorphic on all of 𝐷. Roughly speaking,
holomorphic functions of several variables extend across compact holes. This general result
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is not easy to prove directly using the tools available at this point in the exposition,17 but a
short proof will be possible later, after some additional theory is developed.
The preceding results can be viewed as demonstrating “internal” analytic continuation.

Hartogs observed in his habilitation that “external” analytic continuation can occur too.

Theorem 3 (Hartogs). Suppose 𝑟 is a positive number less than 1. If 𝑓 is holomorphic on
{ (𝑧1, 𝑧2) ∈ ℂ2 ∶ |𝑧1| < 𝑟 and |𝑧2| < 1 } ∪ { (𝑧1, 𝑧2) ∶ |𝑧1| < 1 and 1 − 𝑟 < |𝑧2| < 1 }, then
𝑓 extends to be holomorphic on the unit bidisc, { (𝑧1, 𝑧2) ∶ |𝑧1| < 1 and |𝑧2| < 1 }.

The proof is no different from the proof of Theorem 2, and an analogous theorem holds in
higher dimension. Biholomorphic images of regions of the form indicated in the hypothesis
of the theorem are known as “Hartogs figures.” Such theorems are known collectively as
“the Hartogs phenomenon.”
Exercise 9. Suppose 𝐷 is a complete Reinhardt domain, and 𝑓 is holomorphic on 𝐷. Show
that 𝑓 extends to be holomorphic on the smallest logarithmically convex complete Reinhardt
domain containing 𝐷.

2.5 Natural boundaries
The one-dimensional power series

∑∞
𝑘=0 𝑧

𝑘 has the unit disc as domain of convergence, yet
the function represented by the series, which equals 1∕(1 − 𝑧), extends holomorphically to
ℂ⧵{1}. On the other hand, there exist power series that converge in the unit disc and have the
unit circle as “natural boundary,” meaning that the function represented by the series does
not continue analytically across any boundary point of the disc whatsoever. One concrete
example is the gap series

∑∞
𝑘=0 𝑧

2𝑘 , which has an infinite radial limit at the boundary for a
dense set of angles. More generally, the Hadamard gap theorem18 says that if {𝑛𝑘}∞𝑘=0 is an
increasing sequence of natural numbers, if the series

∑∞
𝑘=0 𝑎𝑘𝑧

𝑛𝑘 has radius of convergence
equal to 1, and if there exists a positive number 𝑠 such that 𝑛𝑘+1 ≥ (1+ 𝑠)𝑛𝑘 for every 𝑘, then
the series has the unit circle as natural boundary.
Convergence regions for power series in two or more variables can have infinitely many

possible shapes. Is every convergence domain (that is, every complete and logarithmically
convex Reinhardt domain) the natural domain of existence of some holomorphic function?
The following theorem19 provides an affirmative answer.

17For a proof using only geometric tools, see Joël Merker and Egmont Porten, AMorse-theoretical proof of the
Hartogs extension theorem, Journal of Geometric Analysis 17 (2007) no. 3, 513–546.

18The gap theoremof JacquesHadamard (1865–1963) appears in his dissertation, Essai sur l’étude des fonctions
données par leur développement de Taylor, Journal de mathématiques pures et appliquées (4) VIII (1892)
101–186. See page 116. The elegant standard proof is due to the famous number theorist Louis J. Mordell
(1888–1972): On power series with the circle of convergence as a line of essential singularities, Journal of the
LondonMathematical Society 2 (1927) 146–148. One textbook where you can find an exposition of the proof
is Invitation to Complex Analysis by Ralph P. Boas, second edition revised by Harold P. Boas, Mathematical
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H. Cartan and Thullen
half a century later

Oberwolfach Photo Collection
Photo ID: 12444

photo by Burchard Kaup

Theorem 4 (Cartan–Thullen). The domain of convergence of a multivariable power series is
a domain of holomorphy. In other words, for every domain of convergence there exists some
power series that converges in the domain and that is singular at every boundary point.

The word “singular” does not necessarily mean that the function blows up. To say that
a power series is singular at a boundary point of the domain of convergence means that
the series does not admit a direct analytic continuation to a neighborhood of the point. A
function whose absolute value tends to infinity at a boundary point is singular at that point,
but so is a function whose absolute value tends to zero at a nonpolynomial rate.
Here are two proofs of Theorem 4, both different from the original proof. The first proof

constructs a noncontinuable multivariable gap series, an idea that goes back to Faber’s 1905
habilitation. The second proof demonstrates the existence of many noncontinuable series
without actually exhibiting one.

Proof of Theorem 4 using the Hadamard gap theorem. When the convergence domain 𝐷 is
the whole space ℂ𝑛, there is nothing to prove. So suppose that 𝐷 is not the whole space.
The complement of 𝐷 then has nonvoid interior (since 𝐷 is a complete Reinhardt domain).
Choose a countable dense subset {𝑤(𝑘)}∞𝑘=1 of the interior of the complement of 𝐷 such that

Association of America, 2010.
19Henri Cartan and Peter Thullen, Zur Theorie der Singularitäten der Funktionenmehrerer komplexenVerän-

derlichen: Regularitäts- und Konvergenzbereiche,Mathematische Annalen 106 (1932) number 1, 617–647.
See Corollary 1 on page 637.
One of the leadingmathematicians of the twentieth century, Henri Cartan (1904–2008) was amajor force

in the development of multidimensional complex analysis. His father was the influential mathematician
Élie Cartan (1869–1951). Peter Thullen (1907–1996) collaborated with his teacher, Heinrich Behnke, on
the first book aboutmultidimensional complex analysis (Theorie der Funktionenmehrerer komplexer Verän-
derlichen, 1934; an updated version appeared in 1970). When Hitler came to power in 1933, Thullen left
Germany on principle and subsequently emigrated to Ecuador. Later on, Thullen had a career in political
economics and worked for the United Nations International Labour Organization.
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the coordinates of each point 𝑤(𝑘) are nonzero. The reason for writing 𝑤(𝑘) instead of 𝑤𝑘
is that the latter notation is reserved for the 𝑘th coordinate of a vector 𝑤. Thus 𝑤(𝑘) =
(𝑤1(𝑘),… , 𝑤𝑛(𝑘)).
Making use of the quantity 𝑀𝛼(𝐷) defined in (2.1), the proof of Theorem 1 provides a

sequence {𝛼(𝑘)}∞𝑘=1 of multi-indices such that

|𝑤(𝑘)𝛼(𝑘)|
𝑀𝛼(𝑘)(𝐷)

≥
𝑛∏

𝑗=1
min(1, 𝑤𝑗(𝑘)), and |𝛼(𝑘 + 1)| ≥ 2|𝛼(𝑘)| for every 𝑘.

The gap series
∞∑

𝑘=1

𝑧𝛼(𝑘)

𝑀𝛼(𝑘)(𝐷)
(2.6)

is a subseries of
∑

𝛼 𝑧
𝛼∕𝑀𝛼(𝐷). That series was shown in the proof of Theorem 1 to converge

absolutely inside 𝐷, so the series (2.6) converges absolutely inside 𝐷 too. On the other hand,
if 𝜔 is a point outside the closure of 𝐷 having no coordinate equal to 0, then density of the
sequence {𝑤(𝑘)}∞𝑘=1 implies the existence of infinitely many values of 𝑘 for which

|𝑤𝑗(𝑘)| ≤ |𝜔𝑗| when 1 ≤ 𝑗 ≤ 𝑛 and
𝑛∏

𝑗=1
min(1, 𝑤𝑗(𝑘)) ≥

1
2

𝑛∏

𝑗=1
min(1, 𝜔𝑗).

Accordingly, the series (2.6) evaluated at 𝜔 has infinitely many terms with absolute value
at least 1

2

∏𝑛
𝑗=1min(1, 𝜔𝑗), hence diverges. In summary, the series (2.6) has 𝐷 as domain of

convergence.
What remains to show is that the power series (2.6) cannot be extended holomorphically

to a neighborhood of any boundary point of 𝐷. Seeking a contradiction, suppose that the
series (2.6) admits a holomorphic extension 𝑓(𝑧) to a neighborhood of some boundary point
of 𝐷. This neighborhood necessarily contains some (other) boundary point of 𝐷 that has no
coordinate equal to 0. Call this point 𝑤.
The idea now is to restrict to the complex line through 𝑤. If 𝜆 ∈ ℂ, and |𝜆| < 1, then

𝜆𝑤 ∈ 𝐷 (since the convergence domain 𝐷 is a complete Reinhardt domain). The series (2.6)
therefore converges absolutely at 𝜆𝑤, that is, the series

∞∑

𝑘=1

𝑤𝛼(𝑘)

𝑀𝛼(𝑘)(𝐷)
𝜆|𝛼(𝑘)| (2.7)

converges absolutely. If |𝜆| > 1, on the other hand, then 𝜆𝑤 is a point in the exterior of 𝐷
where (2.6) diverges, so the series (2.7) diverges. Viewed as a power series in the complex
variable 𝜆, the series (2.7) thus has radius of convergence equal to 1.
Now |𝛼(𝑘+1)| ≥ 2|𝛼(𝑘)| by construction, so the series (2.7) is a gap series with respect to

the variable 𝜆. By Hadamard’s gap theorem, the series (2.7) cannot be analytically continued
to any neighborhood of the point where 𝜆 = 1. On the other hand, the function 𝑓(𝑧) is a
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holomorphic extension of the series (2.6) to a neighborhood of𝑤, so the function sending 𝜆 to
𝑓(𝜆𝑤1,… , 𝜆𝑤𝑛) is a holomorphic extension of the series (2.7) to a neighborhood of the point 1.
The required contradiction has been reached, so the validity of Theorem 4 is established.

Proof of Theorem 4 using the Baire category theorem. For the same reason as in dimension 1,
the space of holomorphic functions on an open set inℂ𝑛 is ametrizable spacewhen equipped
with the topology of uniform convergence on compact sets. One way to define a suitable
metric is to exhaust the open set by an increasing sequence {𝐾𝑗}∞𝑗=1 of compact sets and to
declare the distance between two functions 𝑓 and 𝑔 to be

∞∑

𝑗=1
min ( 1

2𝑗
,max{|𝑓(𝑧) − 𝑔(𝑧)| ∶ 𝑧 ∈ 𝐾𝑗}) .

Since the normal limit of holomorphic functions is still holomorphic, this metric space is
complete. So the Baire category theorem is applicable to the space of holomorphic functions.
In modern formulation, the theorem says that a complete metric space is not the union of

a countable number of nowhere dense subsets.20 In the terminology of Baire (1874–1932), a
countable union of nowhere dense sets is “a set of first category,” and all other sets are sets of
second category. The theorem indicates that in a completemetric space, a set of first category
is a “small” set, since the complementary set evidently cannot be a set of first category.
The notion of “small” depends on the context. For example, in the metric space ℝ with

the usual absolute-value distance, the rational numbers form a dense subset of first category.
Consider a specific boundary point of a convergence domain𝐷 and the set of holomorphic

functions on 𝐷 that extend holomorphically to a neighborhood of this point. The main goal
is to prove that this set has first category in the metric space of all holomorphic functions
on 𝐷. Considering a countable dense set in the boundary of 𝐷 will then show the existence
of a power series that is singular at every boundary point of 𝐷. Indeed, most power series
that converge in 𝐷 are singular at every boundary point.
A first step toward the goal is a multidimensional version of a power-series lemma that

dates back to the end of the nineteenth century. The correct attribution of the single-variable
statement is problematic, but attaching the name of Pringsheim seems appropriate. The
generalization to higher dimensions seems not to have been made explicit in the literature
until the twenty-first century.21

Lemma 1 (Pringsheim lemma in arbitrary dimension). If the coefficients of a power series
are real and nonnegative, then the series is singular at every boundary point of the domain
of convergence for which all the coordinates are nonnegative real numbers.

Proof. Pringsheim’s proof in dimension 1 goes as follows. Suppose that the series
∑∞

𝑗=0 𝑎𝑗𝑧
𝑗

has nonnegative coefficients, and let 𝑓(𝑧) denote the corresponding holomorphic function.
20The theoremwas originally formulated on the real line in the doctoral thesis of René Baire, Sur les fonctions

de variables réelles, Annali di Matematica Pura ed Applicata (3) 3 (1899) 1–123. See page 65.
21Alexander D. Scott and Alan D. Sokal, The repulsive lattice gas, the independent-set polynomial, and the

Lovász local lemma, Journal of Statistical Physics 118 (2005) 1151–1261. See Proposition 2.11 on page 1170.
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There is no loss of generality in supposing that the radius of convergence of the series is equal
to 1. The function 𝑓must be singular at some point of the unit circle, for otherwise the radius
of convergence would be greater than 1. Let 𝑒𝑖𝜃 be a boundary point at which 𝑓 is singular.
The Taylor series of 𝑓 centered at the point 𝑒𝑖𝜃∕2 must then have radius of convergence

equal to 1∕2. Now

𝑓(𝑘)(𝑒𝑖𝜃∕2) =
∞∑

𝑗=𝑘
𝑎𝑗 𝑗(𝑗 − 1)⋯ (𝑗 − 𝑘 + 1)

(
𝑒𝑖𝜃∕2

)𝑗−𝑘
,

and the positivity of 𝑎𝑗 for every 𝑗 implies that |𝑓(𝑘)(𝑒𝑖𝜃∕2)| ≤ 𝑓(𝑘)(1∕2) for every 𝑘. Therefore
the Taylor series of 𝑓 centered at the point 1∕2 cannot converge on a disk of radius greater
than 1∕2. Accordingly, the function 𝑓 is singular at the point 1.
This lovely proof does not seem to generalize to establish the lemma in higher dimension.

The following argument instead adapts a variant proof invented in dimension 1 by Edmund
Landau (1877–1938).
Seeking a contradiction, suppose that the holomorphic function 𝑓(𝑧) represented by the

power series
∑

𝛼 𝑐𝛼𝑧
𝛼 (where 𝑧 ∈ ℂ𝑛) does extend holomorphically to a neighborhood of

some boundary point 𝑤 of the domain of convergence having nonnegative real coordinates.
Bumping 𝑤 reduces to the case that the coordinates of 𝑤 are strictly positive. A dilation of
coordinates modifies the coefficients of the series by positive factors, so there is no loss of
generality in supposing additionally that ‖𝑤‖ = 1 (where ‖⋅‖ denotes the usual Euclidean
norm on the vector space ℂ𝑛). Let 𝜀 be a positive number less than 1∕3 such that the closed
ball with center 𝑤 and radius 3𝜀 lies inside the neighborhood of 𝑤 to which 𝑓 extends holo-
morphically.
The closed ball of radius 2𝜀 centered at the point (1 − 𝜀)𝑤 lies inside the indicated neigh-

borhood of 𝑤, for if
‖𝑧 − (1 − 𝜀)𝑤‖ ≤ 2𝜀,

then the triangle inequality implies that

‖𝑧 − 𝑤‖ = ‖𝑧 − (1 − 𝜀)𝑤 − 𝜀𝑤‖ ≤ ‖𝑧 − (1 − 𝜀)𝑤‖ + 𝜀‖𝑤‖ ≤ 2𝜀 + 𝜀 = 3𝜀.

Consequently, the Taylor series of 𝑓 about the center (1− 𝜀)𝑤 converges absolutely through-
out the closed ball of radius 2𝜀 centered at this point, and in particular at the point (1 + 𝜀)𝑤.
The value of this Taylor series at the point (1 + 𝜀)𝑤 equals

∑

𝛼

1
𝛼!𝑓

(𝛼) ((1 − 𝜀)𝑤) (2𝜀𝑤)𝛼 .

The point (1 − 𝜀)𝑤 lies inside the domain of convergence of the original power series∑
𝛽 𝑐𝛽𝑧

𝛽, so derivatives of 𝑓 at (1 − 𝜀)𝑤 can be computed by differentiating that series. Let
𝛽 − 𝛼 denote the multi-index having 𝑗th component equal to 𝛽𝑗 − 𝛼𝑗, and say that 𝛽 ≥ 𝛼
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when all components of 𝛽 − 𝛼 are nonnegative. Then

𝑓(𝛼) ((1 − 𝜀)𝑤) =
∑

𝛽≥𝛼

𝛽!
(𝛽 − 𝛼)!

𝑐𝛽 ((1 − 𝜀)𝑤)𝛽−𝛼 .

Combining the preceding two expressions shows that the series
∑

𝛼

(
∑

𝛽≥𝛼

𝛽!
𝛼! (𝛽 − 𝛼)!

𝑐𝛽 ((1 − 𝜀)𝑤)𝛽−𝛼) (2𝜀𝑤)𝛼

converges. All the quantities involved in the sumare nonnegative real numbers, so the paren-
theses can be removed and the order of summation can be reversed without affecting the
convergence. The sum then simplifies (via the binomial expansion) to the series

∑

𝛽
𝑐𝛽 ((1 + 𝜀)𝑤)𝛽 .

This convergent series is the original series for 𝑓 evaluated at the point (1 + 𝜀)𝑤.
The comparison test implies that the series

∑
𝛼 𝑐𝛼𝑧

𝛼 converges absolutely when 𝑧 lies in-
side the polydisc determined by the point (1 + 𝜀)𝑤, and in particular throughout an open
neighborhood of 𝑤. (This step uses the supposition that the coordinates of 𝑤 are nonzero.)
Thus 𝑤 is not a boundary point of the domain of convergence, contrary to hypothesis. This
contradiction shows that 𝑓 must be singular at 𝑤 after all.

Now suppose that 𝐷 is the domain of (absolute) convergence of a power series
∑

𝛼 𝑐𝛼𝑧
𝛼.

Then𝐷 is also the domain of convergence of the series
∑

𝛼|𝑐𝛼| 𝑧
𝛼. By the lemma, this series is

singular at every boundary point of 𝐷 having positive real coordinates. An arbitrary bound-
ary point of𝐷 can be written in the form (𝑟1𝑒𝑖𝜃1 ,… , 𝑟𝑛𝑒𝑖𝜃𝑛), where each 𝑟𝑗 is nonnegative, and
the lemma implies that the power series

∑
𝛼 𝑐𝛼𝑒

−𝑖(𝛼1𝜃1+⋯+𝛼𝑛𝜃𝑛)𝑧𝛼 is singular at this boundary
point. In other words, for every boundary point of 𝐷 there exists some power series that
converges in 𝐷 but is singular at the specified boundary point.
Choose a countable dense subset {𝑤(𝑗)}∞𝑗=1 of the boundary of 𝐷. For each natural num-

ber 𝑘, let 𝐵𝑗,𝑘 denote the ball of radius 1∕𝑘 with center 𝑤(𝑗). The space of holomorphic
functions on 𝐷 ∪ 𝐵𝑗,𝑘 embeds continuously into the space of holomorphic functions on 𝐷
via the restriction map. The image of this embedding is not the whole space of holomorphic
functions on 𝐷, for the preceding paragraph produces a convergent power series on 𝐷 that
cannot be holomorphically extended to the ball 𝐵𝑗,𝑘. By a corollary of the Baire category
theorem (dating back to Banach’s famous book22), the image of the embedding must be of
22Stefan Banach, Théorie des opérations linéaires, 1932, second edition 1978, currently available through AMS

Chelsea Publishing; an English translation, Theory of Linear Operations, is currently available through
Dover Publications. The relevant statement is the first theorem in Chapter 3. For a modern treatment,
see section 2.11 of Walter Rudin’s Functional Analysis; a specialization of the theorem proved there is that
a continuous linear map between Fréchet spaces (locally convex topological vector spaces equipped with
complete translation-invariant metrics) either is an open surjection or has image of first category. In the
present context, the restriction map from the metric space of holomorphic functions on 𝐷 ∪ 𝐵𝑗,𝑘 to the
metric space of holomorphic functions on 𝐷 either is a homeomorphism or has range of first category.
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2 Power series

first category (the cited theorem says that if the image were of second category, then it would
be the whole space, which it is not). Accordingly, the set of power series on 𝐷 that extend
some distance across some boundary point can be realized as a countable union of sets of
first category, hence itself is a set of first category. Therefore the set of nowhere extendable
functions is a set of second category.23 Thus most power series that converge in 𝐷 have the
boundary of 𝐷 as natural boundary.

Proof of Theorem 4 using probability. The idea of the second proof is to show that with prob-
ability 1, a randomly chosen power series that converges in 𝐷 is noncontinuable.24 As a
warm-up, consider the case of the unit disc in ℂ. Suppose that the series

∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 has ra-
dius of convergence equal to 1. The claim is that

∑∞
𝑛=0±𝑐𝑛𝑧

𝑛 has the unit circle as natural
boundary for almost all choices of the plus-or-minus signs.
The statement can be made precise by introducing the Rademacher functions. When 𝑛 is

a nonnegative integer, the Rademacher function 𝜀𝑛(𝑡) can be defined on the interval [0, 1] as
follows:

𝜀𝑛(𝑡) = sgn sin(2𝑛𝜋𝑡) =
⎧

⎨
⎩

1, if sin(2𝑛𝜋𝑡) > 0,
−1, if sin(2𝑛𝜋𝑡) < 0,
0, if sin(2𝑛𝜋𝑡) = 0.

Alternatively, the Rademacher functions can be described in terms of binary expansions. If a
number 𝑡 between 0 and 1 is written in binary form as

∑∞
𝑛=1 𝑎𝑛(𝑡)∕2

𝑛, then 𝜀𝑛(𝑡) = 1−2𝑎𝑛(𝑡),
except for the finitely many rational values of 𝑡 that can be written with denominator 2𝑛
(which in any case are values of 𝑡 for which 𝑎𝑛(𝑡) is not well defined).
Exercise 10. Show that the Rademacher functions form an orthonormal system in the space
𝐿2[0, 1] of square-integrable, real-valued functions. Do the Rademacher functions a complete
orthonormal system?
The Rademacher functions provide a mathematical model for the notion of “random plus

and minus signs.” In the language of probability theory, the Rademacher functions are in-
dependent and identically distributed symmetric random variables. Each function takes the
value +1 with probability 1∕2, the value −1 with probability 1∕2, and the value 0 on a set
of measure zero (in fact, on a finite set). The intuitive meaning of “independence” is that
knowing the value of one particular Rademacher function gives no information about the
value of any other Rademacher function.
Here is a precise version of the statement about random series being noncontinuable.25

23Applying Banach’s theorem to deduce the noncontinuability of most functions from the existence of a single
noncontinuable function is an idea that goes back to Pierre Lelong, Fonctions plurisousharmoniques dans
les espaces vectoriels topologiques, Séminaire Pierre Lelong (Analyse) (1967–1968), pp. 167–189, Lecture
Notes in Mathematics, Vol. 71, Springer, Berlin, 1968. See pages 184–185.

24A reference for this section is Jean-Pierre Kahane, Some Random Series of Functions, Cambridge University
Press; see especially Chapter 4.

25R.E.A.C. Paley andA. Zygmund, On some series of functions, (1), Proceedings of theCambridgePhilosophical
Society 26 (1930), number 3, 337–357 (announcement of the theorem without proof); On some series of
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Theorem 5 (Paley–Zygmund). If the power series
∑∞

𝑛=0 𝑐𝑛𝑧
𝑛 has radius of convergence equal

to 1, then for almost every value of 𝑡 in [0, 1], the power series
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛 has the unit circle

as natural boundary.

The words “almost every” mean, as usual, that the exceptional set is a subset of [0, 1] hav-
ing measure zero. In probabilists’ language, one says that the power series “almost surely”
has the unit circle as natural boundary. Implicit in the conclusion is that the radius of conver-
gence of the power series

∑∞
𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧

𝑛 is almost surely equal to 1; this property is evident
since the radius of convergence depends only on the moduli of the coefficients in the series,
and almost surely |𝜀𝑛(𝑡)𝑐𝑛| = |𝑐𝑛| for every 𝑛.

Proof. It suffices to show for an arbitrary point 𝑝 on the unit circle that the set of points 𝑡 in
the unit interval for which the power series

∑∞
𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧

𝑛 continues analytically across 𝑝 is
a set of measure zero. Indeed, take a countable set of points {𝑝𝑗}∞𝑗=1 that is dense in the unit
circle: the union over 𝑗 of the corresponding exceptional sets of measure zero is still a set of
measure zero, and when 𝑡 is in the complement of this set, the power series

∑∞
𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧

𝑛

is nowhere continuable.
So fix a point 𝑝 on the unit circle. A technicality needs to be checked: is the set of values

of 𝑡 for which the power series
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛 continues analytically to a neighborhood of

the point 𝑝 ameasurable subset of the interval [0, 1]? In probabilists’ language, the question
is whether continuability across 𝑝 is an event. The answer is affirmative for the following
reason.
Aholomorphic function𝑓 on theunit disc extends analytically across the boundary point𝑝

if and only if there is some rational number 𝑟 greater than 1∕2 such that the Taylor series of 𝑓
centered at the point 𝑝∕2 has radius of convergence greater than 𝑟. An equivalent statement
is that

lim sup
𝑘→∞

(|𝑓(𝑘)(𝑝∕2)|∕𝑘!)1∕𝑘 < 1∕𝑟,

or that there exists a positive rational number 𝑠 less than 2 and a natural number𝑁 such that

|𝑓(𝑘)(𝑝∕2)| < 𝑘! 𝑠𝑘 whenever 𝑘 > 𝑁.

If 𝑓𝑡(𝑧) denotes the series
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛, then

|𝑓(𝑘)𝑡 (𝑝∕2)| =
|||||||

∞∑

𝑛=𝑘
𝜀𝑛(𝑡)𝑐𝑛

𝑛!
(𝑛 − 𝑘)!

(𝑝∕2)𝑛−𝑘
|||||||
.

The absolutely convergent series on the right-hand side is a measurable function of 𝑡 since
each 𝜀𝑛(𝑡) is ameasurable function, so the set of 𝑡 in the interval [0, 1] for which |𝑓

(𝑘)
𝑡 (𝑝∕2)| <

functions, (3), Proceedings of the Cambridge Philosophical Society 28 (1932), number 2, 190–205 (proof of
the theorem).
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2 Power series

𝑘! 𝑠𝑘 is a measurable set, say 𝐸𝑘. The set of points 𝑡 for which the power series
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛

extends across the point 𝑝 is then
⋃

0<𝑠<2
𝑠∈ℚ

⋃

𝑁≥1

⋂

𝑘>𝑁

𝐸𝑘,

which again is a measurable set, being obtained from measurable sets by countably many
operations of taking intersections and unions.
Notice too that extendability of

∑∞
𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧

𝑛 across the boundary point𝑝 is a “tail event”:
the property is insensitive to changing any finite number of terms of the series. A standard
result from probability known as Kolmogorov’s zero–one law implies that this event either
has probability 0 or has probability 1.
Moreover, eachRademacher function has the same distribution as its negative (both 𝜀𝑛 and

−𝜀𝑛 take the value 1with probability 1∕2 and the value−1with probability 1∕2), so a property
that is almost sure for the series

∑∞
𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧

𝑛 is almost sure for the series
∑∞

𝑛=0(−1)
𝑛𝜀𝑛(𝑡)𝑐𝑛𝑧𝑛

or for any similar series obtained by changing the signs according to a fixed pattern that is
independent of 𝑡. The intuition is that if 𝑆 is ameasurable subset of [0, 1], and each element 𝑡
of 𝑆 is represented as a binary expansion

∑∞
𝑛=1 𝑎𝑛(𝑡)∕2

𝑛, then the set 𝑆′ obtained by system-
atically flipping the bit 𝑎5(𝑡) from 0 to 1 or from 1 to 0 has the same measure as the original
set 𝑆; and similarly if multiple bits are flipped simultaneously.
Now suppose, seeking a contradiction, that there is a neighborhood 𝑈 of 𝑝 to which the

power series
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛 continues analyticallywith positive probability, hencewith prob-

ability 1 by the zero–one law. This neighborhood contains, for some natural number 𝑘, an
arc of the unit circle of length greater than 2𝜋∕𝑘. For each nonnegative integer 𝑛, set 𝑏𝑛
equal to −1 if 𝑛 is a multiple of 𝑘 and +1 otherwise. By the preceding observation, the
power series

∑∞
𝑛=0 𝑏𝑛𝜀𝑛(𝑡)𝑐𝑛𝑧

𝑛 continues analytically to𝑈 with probability 1. The difference
of two continuable series is continuable, so the power series

∑∞
𝑗=0 𝜀𝑗𝑘(𝑡)𝑐𝑗𝑘𝑧

𝑗𝑘 (containing
only those powers of 𝑧 that are divisible by 𝑘) continues to the neighborhood 𝑈 with proba-
bility 1. This new series is invariant under rotation by every integral multiple of angle 2𝜋∕𝑘,
so this series almost surely continues analytically to a neighborhood of the whole unit circle.
In other words, the power series

∑∞
𝑗=0 𝜀𝑗𝑘(𝑡)𝑐𝑗𝑘𝑧

𝑗𝑘 almost surely has radius of convergence
greater than 1. Fix a natural number 𝓁 between 1 and 𝑘−1 and repeat the argument, chang-
ing 𝑏𝑛 to be equal to −1 if 𝑛 is congruent to 𝓁 modulo 𝑘 and 1 otherwise. It follows that
the power series

∑∞
𝑗=0 𝜀𝑗𝑘+𝓁(𝑡)𝑐𝑗𝑘+𝓁𝑧

𝑗𝑘+𝓁, which equals 𝑧𝓁 times the rotationally invariant se-
ries

∑∞
𝑗=0 𝜀𝑗𝑘+𝓁(𝑡)𝑐𝑗𝑘+𝓁𝑧

𝑗𝑘, almost surely has radius of convergence greater than 1. Adding
these series for the different residue classes modulo 𝑘 recovers the original random series∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛, which therefore has radius of convergence greater than 1 almost surely. But

as observed just before the proof, the radius of convergence of
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛 is almost surely

equal to 1. The contradiction shows that the power series
∑∞

𝑛=0 𝜀𝑛(𝑡)𝑐𝑛𝑧
𝑛 does, after all, have

the unit circle as natural boundary almost surely.

Now consider the multidimensional situation: suppose that 𝐷 is the domain of conver-
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gence in ℂ𝑛 of the power series
∑

𝛼 𝑐𝛼𝑧
𝛼. Let 𝜀𝛼 denote one of the Rademacher functions, a

different one for each multi-index 𝛼. The goal is to show that almost surely, the power series∑
𝛼 𝜀𝛼(𝑡)𝑐𝛼𝑧

𝛼 continues analytically across no boundary point of 𝐷. It suffices to show for
one fixed boundary point 𝑝 with nonzero coordinates that the series almost surely is singu-
lar at 𝑝; one gets the full conclusion as before by considering a countable dense sequence in
the boundary.
Having fixed such a boundary point 𝑝, observe that if 𝛿 is an arbitrary positive number,

then the power series
∑

𝛼 𝑐𝛼𝑧
𝛼 fails to converge absolutely at the dilated point (1 + 𝛿)𝑝; for

in the contrary case, the series would converge absolutely in the whole polydisc centered
at 0 determined by the point (1 + 𝛿)𝑝, so 𝑝 would be in the interior of the convergence
domain𝐷 instead of on the boundary. (The assumption that all coordinates of 𝑝 are nonzero
is used here.) Consequently, there are infinitely many values of the multi-index 𝛼 for which
|𝑐𝛼[(1 + 2𝛿)𝑝]𝛼| > 1; for otherwise, the series

∑
𝛼 𝑐𝛼[(1 + 𝛿)𝑝]𝛼 would converge absolutely

by comparison with the convergent geometric series
∑

𝛼[(1+𝛿)∕(1+2𝛿)]
|𝛼|. In other words,

there are infinitely many values of 𝛼 for which |𝑐𝛼𝑝𝛼| > 1∕(1 + 2𝛿)|𝛼|.
Now consider the single-variable random power series obtained by restricting the multi-

variable random power series to the complex line through 𝑝. This series, as a function of 𝜆 in
the unit disc in ℂ, is

∑∞
𝑘=0

(∑
|𝛼|=𝑘 𝜀𝛼(𝑡)𝑐𝛼𝑝

𝛼
)
𝜆𝑘. The goal is to show that this single-variable

power series almost surely has radius of convergence equal to 1 and almost surely is singular
at the point on the unit circle where 𝜆 = 1. It then follows that the multivariable random
series

∑
𝛼 𝜀𝛼(𝑡)𝑐𝛼𝑧

𝛼 almost surely is singular at 𝑝.
The deduction that the one-variable series almost surely is singular at 1 follows from the

same argument used in the proof of the Paley–Zygmund theorem. Although the series co-
efficient

∑
|𝛼|=𝑘 𝜀𝛼(𝑡)𝑐𝛼𝑝

𝛼 is no longer a Rademacher funtion, it is still a symmetric random
variable (symmetric means that the variable is equally distributed with its negative), and the
coefficients for different values of 𝑘 are independent, so the same proof applies.
What remains to show, then, is that the single-variable power series almost surely has

radius of convergence equal to 1. The verification of this property requires deducing infor-
mation about the size of the coefficients

∑
|𝛼|=𝑘 𝜀𝛼(𝑡)𝑐𝛼𝑝

𝛼 from the knowledge that |𝑐𝛼𝑝𝛼| >
1∕(1 + 2𝛿)|𝛼| for infinitely many values of 𝛼.
The orthonormality of the Rademacher functions implies that

∫
1

0

|||||||

∑

|𝛼|=𝑘
𝜀𝛼(𝑡)𝑐𝛼𝑝𝛼

|||||||

2

𝑑𝑡 =
∑

|𝛼|=𝑘
|𝑐𝛼𝑝𝛼|2.

The sum on the right-hand side is at least as large as any single term, so there are infinitely
many values of 𝑘 for which

∫
1

0

|||||||

∑

|𝛼|=𝑘
𝜀𝛼(𝑡)𝑐𝛼𝑝𝛼

|||||||

2

𝑑𝑡 > 1
(1 + 2𝛿)2𝑘

.
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The issue now is to obtain some control on the function ||||
∑

|𝛼|=𝑘 𝜀𝛼(𝑡)𝑐𝛼𝑝
𝛼||||
2
from the lower

bound on its integral.
A technique for obtaining this control is due to Paley and Zygmund.26 The following

lemma, implicit in the cited paper, is sometimes called the Paley–Zygmund inequality.
Lemma 2. If 𝑔∶ [0, 1] → ℝ is a nonnegative, square-integrable function, then the Lebesgue
measure of the set of points at which the value of 𝑔 is greater than or equal to 1

2
∫ 1
0 𝑔(𝑡)𝑑𝑡 is

at least (
∫ 1
0 𝑔(𝑡)𝑑𝑡

)2

4 ∫ 1
0 𝑔(𝑡)2 𝑑𝑡

. (2.8)

Proof. Let 𝑆 denote the indicated subset of [0, 1] and 𝜇 its measure. On the set [0, 1] ⧵ 𝑆, the
function 𝑔 is bounded above by the constant 1

2
∫ 1
0 𝑔(𝑡)𝑑𝑡, so

∫
1

0
𝑔(𝑡)𝑑𝑡 = ∫

𝑆
𝑔(𝑡)𝑑𝑡 + ∫

[0,1]⧵𝑆
𝑔(𝑡)𝑑𝑡

≤ ∫
𝑆
𝑔(𝑡)𝑑𝑡 + (1 − 𝜇) ⋅ 12 ∫

1

0
𝑔(𝑡)𝑑𝑡

≤ ∫
𝑆
𝑔(𝑡)𝑑𝑡 + 1

2 ∫
1

0
𝑔(𝑡)𝑑𝑡.

Therefore
1
4(∫

1

0
𝑔(𝑡)𝑑𝑡)

2

≤ (∫
𝑆
𝑔(𝑡)𝑑𝑡)

2

.

By the Cauchy–Schwarz inequality,

(∫
𝑆
𝑔(𝑡)𝑑𝑡)

2

≤ 𝜇 ∫
𝑆
𝑔(𝑡)2 𝑑𝑡 ≤ 𝜇 ∫

1

0
𝑔(𝑡)2 𝑑𝑡.

Combining the preceding two inequalities yields the desired conclusion (2.8).

Now apply the lemma with 𝑔(𝑡) equal to ||||
∑

|𝛼|=𝑘 𝜀𝛼(𝑡)𝑐𝛼𝑝
𝛼||||
2
. The integral in the denomi-

nator of (2.8) equals

∫
1

0

|||||||

∑

|𝛼|=𝑘
𝜀𝛼(𝑡)𝑐𝛼𝑝𝛼

|||||||

4

𝑑𝑡. (2.9)

Exercise 11. The integral of the product of four Rademacher functions equals 0 unless the
four functions are equal in pairs (possibly all four functions are equal).

26See Lemma 19 on page 192 of R. E. A. C. Paley and A. Zygmund, On some series of functions, (3), Proceedings
of the Cambridge Philosophical Society 28 (1932), number 2, 190–205.
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2 Power series

There are three ways to group four items into two pairs, so the integral (2.9) equals
∑

|𝛼|=𝑘
|𝑐𝛼𝑝𝛼|4 + 3

∑

|𝛼|=𝑘
|𝛽|=𝑘
𝛼≠𝛽

|𝑐𝛼𝑝𝛼|2 |𝑐𝛽𝑝𝛽|2.

This expression is no more than 3
(∑

|𝛼|=𝑘 |𝑐𝛼𝑝
𝛼|2
)2
, or 3

(
∫ 1
0 𝑔(𝑡)𝑑𝑡

)2
. Accordingly, the quo-

tient in (2.8) is bounded below by 1∕12 for the indicated choice of 𝑔. (The specific value 1∕12
is not significant; what matters is the positivity of this constant.)
The upshot is that there are infinitely many values of 𝑘 for which there exists a subset of

the interval [0, 1] of measure at least 1∕12 such that

|||||||

∑

|𝛼|=𝑘
𝜀𝛼(𝑡)𝑐𝛼𝑝𝛼

|||||||

1∕𝑘

> 1
21∕{2𝑘}(1 + 2𝛿)

for every 𝑡 in this subset. The right-hand side exceeds 1∕(1+3𝛿)when 𝑘 is sufficiently large.
For different values of 𝑘, the expressions on the left-hand side are independent functions.
The probability that two independent events occur simultaneously is the product of their
probabilities, so if 𝑚 is a natural number, and 𝑚 of the indicated values of 𝑘 are selected,
then the probability that there is none for which

|||||||

∑

|𝛼|=𝑘
𝜀𝛼(𝑡)𝑐𝛼𝑝𝛼

|||||||

1∕𝑘

> 1
(1 + 3𝛿)

(2.10)

is at most (11∕12)𝑚. Since (11∕12)𝑚 tends to 0 as𝑚 tends to infinity, the probability is 1 that
inequality (2.10) holds for some value of 𝑘. For an arbitrary natural number 𝑁, the same
conclusion holds (for the same reason) for some value of 𝑘 larger than 𝑁. The intersection
of countably many sets of probability 1 is again a set of probability 1, so

lim sup
𝑘→∞

|||||||

∑

|𝛼|=𝑘
𝜀𝛼(𝑡)𝑐𝛼𝑝𝛼

|||||||

1∕𝑘

≥ 1
(1 + 3𝛿)

with probability 1. (The argument in this paragraph is nothing but the proof of the standard
Borel–Cantelli lemma from probability theory.)
Thus the one-variable power series

∑∞
𝑘=0

(∑
|𝛼|=𝑘 𝜀𝛼(𝑡)𝑐𝛼𝑝

𝛼
)
𝜆𝑘 almost surely has radius of

convergence bounded above by 1 + 3𝛿. But 𝛿 is an arbitrary positive number, so the radius
of convergence is almost surely bounded above by 1. The radius of convergence is surely no
smaller than 1, for the series converges absolutely when |𝜆| < 1. Therefore the radius of
convergence is almost surely equal to 1. This conclusion completes the proof.
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2 Power series

2.6 Summary: domains of convergence
The preceding discussion shows that for complete Reinhardt domains, the following prop-
erties are all equivalent.

• The domain is logarithmically convex.

• The domain is the domain of convergence of some power series.

• The domain is a domain of holomorphy.

In other words, the problem of characterizing domains of holomorphy is solved for the spe-
cial case of complete Reinhardt domains.

2.7 Separate holomorphicity implies joint holomorphicity
The working definition of a holomorphic function of two (or more) variables is a continuous
function that is holomorphic in each variable separately. Hartogs proved that the hypothesis
of continuity is superfluous.27

Theorem 6 (Hartogs). Suppose 𝑓(𝑧1, 𝑧2) is holomorphic in 𝑧1 for each fixed 𝑧2 and holomor-
phic in 𝑧2 for each fixed 𝑧1. Then 𝑓(𝑧1, 𝑧2) is holomorphic jointly in the two variables. In other
words, 𝑓(𝑧1, 𝑧2) can be represented locally as a convergent power series in two variables.

An analogous theorem holds for functions of 𝑛 complex variables withminor adjustments
to the proof. But there is no corresponding theorem for functions of real variables. Indeed,
the function onℝ2 that equals 0 at the origin and equals 𝑥𝑦∕(𝑥2 + 𝑦2)when (𝑥, 𝑦) ≠ (0, 0) is
real-analytic in each variable separately but is not even continuous as a function of the two
variables jointly. A large literature exists about deducing properties that hold in all variables
jointly from properties that hold in each variable separately.28
Theproof ofHartogs depends on somepriorwork of theAmerican complex analystWilliam

Fogg Osgood (1864–1943). Here is the initial step.29

Theorem 7 (Osgood). If 𝑓(𝑧1, 𝑧2) is holomorphic in each variable separately and is bounded
(locally) in both variables jointly, then 𝑓(𝑧1, 𝑧2) is holomorphic in both variables jointly.

27See §3 of his 1906 habilitation thesis.
28See a survey article by Marek Jarnicki and Peter Pflug, Directional regularity vs. joint regularity, Notices of

the American Mathematical Society 58 (2011), number 7, 896–904. For more detail, see the same authors’
book Separately Analytic Functions, European Mathematical Society, 2011.

29W. F. Osgood, Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen 52
(1899), number 2–3, 462–464.
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2 Power series

Proof. The conclusion is local and is invariant under translations and dilations of the coor-
dinates, so there is no loss of generality in supposing that the domain of definition of 𝑓 is the
unit bidisc and that the absolute value of 𝑓 is bounded above by 1 in the bidisc.
There are two natural ways to proceed. Evidently the product of a holomorphic function

of 𝑧1 and a holomorphic function of 𝑧2 is jointly holomorphic, so one strategy is to show that
𝑓(𝑧1, 𝑧2) can be realized as the limit of a normally convergent series of product functions.
An alternative method is to show directly that 𝑓 is jointly continuous, whence 𝑓 can be
represented locally by the iterated Cauchy integral formula.

Method 1 For each fixed value of 𝑧1, the function sending 𝑧2 to 𝑓(𝑧1, 𝑧2) is holomorphic,
hence can be expanded in a power series

∑∞
𝑘=0 𝑐𝑘(𝑧1)𝑧

𝑘
2 that converges for 𝑧2 in the unit disc.

Moreover, the uniform bound on 𝑓 implies that |𝑐𝑘(𝑧1)| ≤ 1 for each 𝑘 by Cauchy’s estimate
for derivatives. Accordingly, the series

∑∞
𝑘=0 𝑐𝑘(𝑧1)𝑧

𝑘
2 converges uniformly in both variables

jointly in an arbitrary compact subset of the open unit bidisc. All that remains to show,
then, is that the coefficient function 𝑐𝑘(𝑧1) is a holomorphic function of 𝑧1 in the unit disc
for each 𝑘.
Proceed by induction on 𝑘. For the basis step, observe that 𝑐0(𝑧1) = 𝑓(𝑧1, 0), so 𝑐0(𝑧1) is

a holomorphic function of 𝑧1 in the unit disc by the hypothesis of separate holomorphicity.
Now make the induction hypothesis that for some natural number 𝑘, the function 𝑐𝑗(𝑧1) is
holomorphic whenever 𝑗 < 𝑘. Observe that

𝑓(𝑧1, 𝑧2) −
∑𝑘−1

𝑗=0 𝑐𝑗(𝑧1)𝑧
𝑗
2

𝑧𝑘2
= 𝑐𝑘(𝑧1) +

∞∑

𝑚=1
𝑐𝑘+𝑚(𝑧1)𝑧𝑚2 when 𝑧2 ≠ 0.

When 𝑧2 tends to 0, the right-hand side converges to 𝑐𝑘(𝑧1) uniformly with respect to 𝑧1,
hence so does the left-hand side. For every fixed nonzero value of 𝑧2, the left-hand side is a
holomorphic function of 𝑧1 by the induction hypothesis and the hypothesis of separate holo-
morphicity. So when 𝑧2 tends to 0, the function 𝑐𝑘(𝑧1) arises as the normal limit of holomor-
phic functions, hence is holomorphic. This conclusion completes the induction argument
and also the proof of the theorem.

Method 2 In view of the local nature of the problem, checking continuity at the origin will
suffice. By the triangle inequality,

|𝑓(𝑧1, 𝑧2) − 𝑓(0, 0)| ≤ |𝑓(𝑧1, 𝑧2) − 𝑓(𝑧1, 0)| + |𝑓(𝑧1, 0) − 𝑓(0, 0)|.

When 𝑧1 is held fixed, the function that sends 𝑧2 to 𝑓(𝑧1, 𝑧2) − 𝑓(𝑧1, 0) is holomorphic in the
unit disc, has absolute value bounded above by 2, and is equal to 0 at the origin. Accordingly,
the Schwarz lemma implies that |𝑓(𝑧1, 𝑧2)−𝑓(𝑧1, 0)| ≤ 2|𝑧2|. Parallel reasoning implies that
|𝑓(𝑧1, 0) − 𝑓(0, 0)| ≤ 2|𝑧1|. Thus

|𝑓(𝑧1, 𝑧2) − 𝑓(0, 0)| ≤ 2(|𝑧1| + |𝑧2|),

so 𝑓 is indeed jointly continuous at the origin.
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2 Power series

Subsequently, Osgood made further progress but failed to achieve the ultimate result.30

Theorem 8 (Osgood). If 𝑓(𝑧1, 𝑧2) is holomorphic in each variable separately on a domain 𝐷,
then 𝑓 is holomorphic in both variables jointly on a dense open subset of 𝐷.

Proof. The goal is to show that if𝐷1×𝐷2 is an arbitrary closed bidisc contained in the domain
of definition of 𝑓, then there is an open subset of 𝐷1 ×𝐷2 on which 𝑓 is jointly holomorphic.
For each natural number 𝑘, let 𝐸𝑘 denote the set of values of the variable 𝑧1 in 𝐷1 such that
|𝑓(𝑧1, 𝑧2)| ≤ 𝑘 whenever 𝑧2 ∈ 𝐷2. The continuity of |𝑓(𝑧1, 𝑧2)| in 𝑧1 for fixed 𝑧2 implies
that the set { 𝑧1 ∈ 𝐷1 ∶ |𝑓(𝑧1, 𝑧2)| ≤ 𝑘 } is closed, and 𝐸𝑘 is the intersection of these closed
sets as 𝑧2 runs over 𝐷2. So 𝐸𝑘 is a closed subset of 𝐷1. The continuity of |𝑓(𝑧1, 𝑧2)| in 𝑧2 for
fixed 𝑧1 implies that

⋃∞
𝑘=1 𝐸𝑘 = 𝐷1. By the Baire category theorem, there is some value of 𝑘

for which the closed set 𝐸𝑘 has nonvoid interior. Consequently, there is an open subset of
𝐷1 ×𝐷2 on which the separately holomorphic function 𝑓 is bounded, hence holomorphic by
Theorem 7.

Proof of Theorem 6 on separate holomorphicity. The theorem is essentially local, so there is
no loss of generality in supposing that the domain of the function is a bidisc. By Theorem 8,
there is some smaller bidisc on which the separately holomorphic function is jointly holo-
morphic. Expand this smaller bidisc as much as possible until singularities are encountered.
To show that the imagined singularities are not actually present, it suffices to prove that if

𝑓(𝑧1, 𝑧2) is separately holomorphic on a neighborhood of the closed unit bidisc, and if there
exists a positive 𝛿 less than 1 such that 𝑓 is jointly holomorphic in a neighborhood of the
smaller bidisc where |𝑧2| ≤ 𝛿 and |𝑧1| ≤ 1, then 𝑓 is jointly holomorphic on the open unit
bidisc.
In this situation, write 𝑓(𝑧1, 𝑧2) as a series

∑∞
𝑘=0 𝑐𝑘(𝑧1)𝑧

𝑘
2 . Each coefficient function 𝑐𝑘(𝑧1)

can be written as an integral
1
2𝜋𝑖

∫
|𝑧2|=𝛿

𝑓(𝑧1, 𝑧2)
𝑧𝑘+12

𝑑𝑧2,

so the joint holomorphicity of 𝑓 on the small bidisc implies that 𝑐𝑘(𝑧1) is a holomorphic
function of 𝑧1 in the unit disc. If 𝑀 is an upper bound for |𝑓(𝑧1, 𝑧2)| when |𝑧2| ≤ 𝛿 and
|𝑧1| ≤ 1, then |𝑐𝑘(𝑧1)| ≤ 𝑀∕𝛿𝑘 for every 𝑘. Accordingly,

|𝑐𝑘(𝑧1)|1∕𝑘 ≤
max{1,𝑀}

𝛿
for every value of 𝑘.

The constant on the right-hand side is independent of 𝑘. Moreover, for each fixed 𝑧1, the
series

∑∞
𝑘=0 𝑐𝑘(𝑧1)𝑧

𝑘
2 converges for 𝑧2 in the unit disc, so lim sup𝑘→∞ |𝑐𝑘(𝑧1)|

1∕𝑘 ≤ 1 for every 𝑧1
by the formula for the radius of convergence.
The goal now is to show that if 𝜀 is an arbitrary (small) positive number and 𝑟 is an arbitrary

radius slightly less than 1, then there exists a natural number𝑁 such that |𝑐𝑘(𝑧1)|1∕𝑘 < 1 + 𝜀
30W. F. Osgood, Zweite Note über analytische Functionen mehrerer Veränderlichen,Mathematische Annalen

53 (1900), number 3, 461–464.
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when 𝑘 ≥ 𝑁 and |𝑧1| ≤ 𝑟. This property implies that the series
∑∞

𝑘=0 𝑐𝑘(𝑧1)𝑧
𝑘
2 converges

uniformly on the set where |𝑧1| ≤ 𝑟 and |𝑧2| ≤ 1∕(1+ 2𝜀), so 𝑓(𝑧1, 𝑧2) is holomorphic on the
interior of this set. Since 𝑟 and 𝜀 are arbitrary, the function 𝑓(𝑧1, 𝑧2) is jointly holomorphic
on the open unit bidisc.
Letting 𝑢𝑘(𝑧1) denote the subharmonic function |𝑐𝑘(𝑧1)|1∕𝑘 reduces the problem to the fol-

lowing technical lemma, after which the proof will be complete.

Lemma 3. Suppose {𝑢𝑘}∞𝑘=1 is a sequence of subharmonic functions on the openunit disc inℂ
1

that are uniformly bounded above by a (large) constant 𝐵, and suppose lim sup𝑘→∞ 𝑢𝑘(𝑧) ≤ 1
for every 𝑧 in the unit disc. Then for every positive 𝜀 and every radius 𝑟 less than 1, there exists
a natural number 𝑁 such that 𝑢𝑘(𝑧) ≤ 1 + 𝜀 when |𝑧| ≤ 𝑟 and 𝑘 ≥ 𝑁.

Proof. A compactness argument reduces the problem to showing that for each point 𝑧0 in
the closed disk of radius 𝑟, there is a neighborhood 𝑈 of 𝑧0 and a natural number 𝑁 such
that 𝑢𝑘(𝑧) ≤ 1 + 𝜀 when 𝑧 ∈ 𝑈 and 𝑘 ≥ 𝑁. The definition of lim sup provides only a natural
number 𝑁 depending on 𝑧 such that 𝑢𝑘(𝑧) ≤ 1 + 𝜀 when 𝑘 ≥ 𝑁. The goal is to obtain an
analogous inequality that is locally uniform (in other words,𝑁 should be independent of the
point 𝑧).
Subharmonic functions are upper semicontinuous, so there is a neighborhood of 𝑧0 in

which the values of 𝑢𝑘 are not much bigger than 𝑢𝑘(𝑧0), but the size of this neighborhood in
principle could depend on 𝑘. The key idea for proving a locally uniform estimate is to apply
the subaveraging property of subharmonic functions, observing that integrals over discs are
stable under small perturbations of the center point because of the uniform bound on the
functions. Here are the details.
Fix a positive number 𝛿 less than (1− 𝑟)∕3. Fatou’s lemma about integrals of nonnegative

functions implies that

∫
|𝑧−𝑧0|<𝛿

lim inf
𝑘→∞

(𝐵 − 𝑢𝑘(𝑧))𝑑Area𝑧 ≤ lim inf
𝑘→∞

∫
|𝑧−𝑧0|<𝛿

(𝐵 − 𝑢𝑘(𝑧))𝑑Area𝑧.

This step uses the hypothesis that there is some (large) uniform upper bound 𝐵 for the se-
quence of subharmonic functions. Subtracting 𝐵𝜋𝛿2 from both sides and changing the signs
(which reverses the direction of the inequality) shows that

∫
|𝑧−𝑧0|<𝛿

lim sup
𝑘→∞

𝑢𝑘(𝑧)𝑑Area𝑧 ≥ lim sup
𝑘→∞

∫
|𝑧−𝑧0|<𝛿

𝑢𝑘(𝑧)𝑑Area𝑧.

The hypothesis that lim sup𝑘→∞ 𝑢𝑘(𝑧) ≤ 1 implies that the left-hand side is bounded above
by 𝜋𝛿2. Accordingly, there is a natural number 𝑁 such that

∫
|𝑧−𝑧0|<𝛿

𝑢𝑘(𝑧)𝑑Area𝑧 <
(
1 + 1

2
𝜀
)
𝜋𝛿2 when 𝑘 ≥ 𝑁.
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If 𝛾 is a positive number less than 𝛿, and 𝑧1 is a point such that |𝑧1 − 𝑧0| < 𝛾, then the disc
of radius 𝛿 + 𝛾 centered at 𝑧1 contains the disc of radius 𝛿 centered at 𝑧0, with an excess of
area equal to 𝜋(𝛾2+2𝛾𝛿). The subaveraging property of subharmonic functions implies that

𝜋(𝛿 + 𝛾)2𝑢𝑘(𝑧1) ≤ ∫
|𝑧−𝑧1|<𝛿+𝛾

𝑢𝑘(𝑧)𝑑Area𝑧 <
(
1 + 1

2
𝜀
)
𝜋𝛿2 + 𝐵𝜋

(
𝛾2 + 2𝛾𝛿

)

when 𝑘 ≥ 𝑁, or

𝑢𝑘(𝑧1) <

(
1 + 1

2
𝜀
)
𝜋𝛿2 + 𝐵𝜋(𝛾2 + 2𝛾𝛿)

𝜋(𝛿 + 𝛾)2
.

The limit of the right-hand side when 𝛾 → 0 equals 1 + 1

2
𝜀, so there is a small positive value

of 𝛾 such that 𝑢𝑘(𝑧1) < 1 + 𝜀 when 𝑘 ≥ 𝑁 and 𝑧1 is an arbitrary point in the disk of radius 𝛾
centered at 𝑧0. This locally uniform estimate completes the proof of the lemma.

Exercise 12. Find a counterexample showing that the conclusion of the lemma can fail if the
hypothesis of a uniform upper bound 𝐵 is omitted.
Exercise 13. What adjustments are needed in the proof to obtain the analogue of Theorem 6
in dimension 𝑛?
(Hartogs addresses this question in §4 of his habilitation.)
Exercise 14. Prove that a separately polynomial function on ℂ2 is necessarily a jointly poly-
nomial function.31

Exercise 15. Define 𝑓∶ ℂ2 → ℂ ∪ {∞} as follows:

𝑓(𝑧1, 𝑧2) =
⎧

⎨
⎩

(𝑧1 + 𝑧2)2∕(𝑧1 − 𝑧2), when 𝑧1 ≠ 𝑧2;
∞, when 𝑧1 = 𝑧2 but (𝑧1, 𝑧2) ≠ (0, 0);
0, when (𝑧1, 𝑧2) = (0, 0).

Show that 𝑓 is separately meromorphic, yet 𝑓 is not jointly continuous at (0, 0) with respect
to the spherical metric on the extended complex numbers.32

31The corresponding statement for functions onℝ2 was proved by F.W. Carroll, A polynomial in each variable
separately is a polynomial, American Mathematical Monthly 68 (1961) 42.

32This example is due to Theodore J. Barth, Families of holomorphicmaps intoRiemann surfaces,Transactions
of the AmericanMathematical Society 207 (1975) 175–187. Barth’s interpretation of the example is that 𝑓 is a
mapping fromℂ2 into the Riemann sphere (a one-dimensional, compact, complexmanifold), and 𝑓 is sepa-
rately holomorphic but not jointly holomorphic. In other words, Theorem 6 about separately holomorphic
functions being holomorphic can fail when the target space ℂ is replaced by a complex manifold.
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3 Convexity
From one point of view, convexity is an unnatural property in complex analysis. The Rie-
mann mapping theorem shows that already in dimension 1, convexity is not preserved by
biholomorphic mappings: indeed, every nonconvex but simply connected domain in the
plane is conformally equivalent to the unit disc.
On the other hand, Section 2.2 reveals that a certain kind of convexity property—logarithmic

convexity—appears naturally in studying convergence domains of power series. The theme
of this chapter is that some other analogues of convexity are fundamental in multidimen-
sional complex analysis.

3.1 Real convexity
Ordinary geometric convexity in ℝ𝑛 can be described either through an internal property
(the line segment joining two points of the set stays within the set) or through an external
property (every point exterior to the set can be separated from the set by a hyperplane). The
latter geometric property can be rephrased in the language of analysis by saying that every
point in the exterior of the convex set can be separated from the set by a linear function; that
is, there is a linear function that is larger at the specified exterior point than anywhere on
the convex set.
More precisely, the internal property says that if 𝑥 and 𝑦 are two arbitrary points of the set,

and 𝑡 is an arbitrary real number between 0 and 1, then the point 𝑡𝑥+ (1− 𝑡)𝑦 lies in the set.
One can deduce by induction that if 𝑥(1), . . . , 𝑥(𝑘) are points of the set, and 𝑡(1), . . . , 𝑡(𝑘) are
nonnegative real numbers that sum to 1, then the point 𝑡(1)𝑥(1) +⋯ + 𝑡(𝑘)𝑥(𝑘) lies in the
set. The external property is most conveniently formulated for closed sets. In this setting, the
property says that for each point outside the set, there exists a hyperplane passing through
the point and leaving the set on one side. Equivalently, there exists an affine linear function
that equals 0 at the specified point and is negative on the set.
To see that the two properties are equivalent for a closed set 𝐶, suppose first that the ex-

ternal property holds. To see that the internal property holds, let 𝑥 and 𝑦 be two arbitrary
points of 𝐶. Observe that if 𝓁 is an arbitrary affine linear function, then 𝓁(𝑡𝑥+(1− 𝑡)𝑦) is an
affine linear function of 𝑡, hence is monotonic. Accordingly, an affine linear function that
has negative values at 𝑥 and 𝑦 also has a negative value at every point of the line segment
joining 𝑥 to 𝑦. Therefore every point between 𝑥 and 𝑦 lies in 𝐶. Thus the exterior property
implies the interior property.
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3 Convexity

In the other direction, suppose that the internal property holds for the closed set 𝐶. To
verify the external property, let 𝑞 be an arbitrary point in the complement of 𝐶. There exists
a point 𝑥 in 𝐶 at minimal distance from 𝑞. The open ball 𝐵 centered at 𝑞 with radius equal to
the distance ‖𝑞−𝑥‖ is then disjoint from the set𝐶. Every open half-line with endpoint 𝑥 that
intersects 𝐵must be disjoint from 𝐶 by the internal convexity property of 𝐶. The union of all
these open half-lines is an open half-space containing 𝑞 and having boundary equal to the
hyperplane through 𝑥 orthogonal to the line segment joining 𝑞 to 𝑥. The parallel hyperplane
through 𝑞 is the required hyperplane disjoint from 𝐶. Thus the interior property implies the
exterior property.
For an arbitrary set 𝐶, not necessarily closed or convex, the convex hull of 𝐶 is the smallest

convex set containing 𝐶, namely, the intersection of all convex sets containing 𝐶. An equiv-
alent characterization of the convex hull of a set 𝐶 in ℝ𝑛 is the collection of all points of the
form 𝑡(1)𝑥(1) +⋯ + 𝑡(𝑛 + 1)𝑥(𝑛 + 1), where 𝑥(1), . . . , 𝑥(𝑛 + 1) are arbitrary points of 𝐶,
and 𝑡(1), . . . , 𝑡(𝑛 + 1) are arbitrary nonnegative real numbers that sum to 1 (Carathéodory’s
theorem). This description easily implies that the convex hull of an open set is open, and the
convex hull of a compact set is compact.1

Exercise 16. Find an example of a closed subset of ℝ2 whose convex hull is not closed.
Observe that an open set 𝐺 inℝ𝑛 is convex if and only if the convex hull of every compact

subset 𝐾 is again a compact subset of 𝐺. Indeed, if 𝐾 is a subset of 𝐺, then the convex hull
of 𝐾 is a subset of the convex hull of 𝐺, so if 𝐺 is already convex, then the convex hull of 𝐾
is both compact and a subset of 𝐺. Conversely, if 𝐺 is not convex, then there are two points
of 𝐺 such that the line segment joining them intersects the complement of 𝐺; take 𝐾 to be
the union of the two points.

3.2 Convexity with respect to a class of functions
The analytic description of convexity has a natural generalization. Suppose that ℱ is a class
of upper semicontinuous2 real-valued functions on an open set 𝐺 in ℂ𝑛 (which might be ℂ𝑛

itself). A compact subset 𝐾 of 𝐺 is said to be convex with respect to the class ℱ if for every
point 𝑞 in 𝐺 ⧵ 𝐾 there exists an element 𝑓 of ℱ for which 𝑓(𝑞) > max𝑧∈𝐾 𝑓(𝑧); in other
words, every point outside 𝐾 can be separated from 𝐾 by a function in ℱ. If ℱ is a class
of functions that are complex-valued but not real-valued (holomorphic functions, say), then

1In an infinite-dimensional Hilbert space, however, the convex hull of a compact set is not necessarily closed,
let alone compact. But the closure of the convex hull of a compact set is compact in everyHilbert space and in
every Banach space. See, for example, Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional
Analysis: A Hitchhiker’s Guide, third edition, Springer, 2006, section 5.6.
A standard reference for the finite-dimensional theory of real convexity is R. Tyrrell Rockafellar, Convex

Analysis, PrincetonUniversity Press, 1970 (reprinted 1997). A less comprehensive butmore accessible book
is Convexity by H. G. Eggleston, Cambridge University Press, 1958.

2Recall that a real-valued function 𝑓 is upper semicontinuous if 𝑓−1(−∞, 𝑎) is an open set for every real
number 𝑎. Upper semicontinuity guarantees that 𝑓 attains a maximum on each compact set.
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one can consider convexity with respect to the class of absolute values of the functions in ℱ
(so that inequalities are meaningful). In this context, one typically says “ℱ-convex” for short
when the meaning is really “𝒢-convex, where 𝒢 = { |𝑓| ∶ 𝑓 ∈ ℱ }.”
The ℱ-convex hull of a compact set 𝐾, denoted by 𝐾ℱ (or simply by 𝐾 in contexts where

the class ℱ is understood), is the set of all points of 𝐺 that cannot be separated from 𝐾 by a
function in the classℱ. The open set𝐺 itself is calledℱ-convex if for every compact subset𝐾
of 𝐺, the ℱ-convex hull 𝐾ℱ (by definition a subset of 𝐺) is a compact subset of 𝐺.
Example 1. Let𝐺 beℝ𝑛, and letℱ be the set of all continuous functions onℝ𝑛. Every compact
set𝐾 isℱ-convex because, byUrysohn’s lemma, every point not in𝐾 can be separated from𝐾
by a continuous function. (There is a continuous function that is equal to 0 on 𝐾 and equal
to 1 at a specified point not in 𝐾.)
Example 2. Let 𝐺 be ℂ𝑛, and let ℱ be the set of absolute values of the coordinate functions,
{|𝑧1|,… , |𝑧𝑛|}. Theℱ-convex hull of a single point𝑤 is the set of all points 𝑧 for which |𝑧𝑗| ≤
|𝑤𝑗| for all 𝑗, that is, the polydisc determined by the point 𝑤. (If some coordinate of 𝑤 is
equal to 0, then this polydisc is degenerate.) More generally, theℱ-convex hull of a compact
set 𝐾 is the set of points 𝑧 for which |𝑧𝑗| ≤ max{ |𝜁𝑗| ∶ 𝜁 ∈ 𝐾 } for every 𝑗. The ℱ-convex
open sets are precisely the open polydiscs centered at the origin.
Exercise 17. Show that a domain in ℂ𝑛 is convex with respect to the class ℱ consisting of all
the absolute values of monomials 𝑧𝛼 if and only if the domain is a logarithmically convex,
complete Reinhardt domain.
A useful observation is that increasing the class of functionsℱ makes separation of points

easier, so the collection of ℱ-convex sets becomes larger. In other words, if ℱ1 ⊂ ℱ2, then
every ℱ1-convex set is also ℱ2-convex.
Exercise 18. As indicated above, ordinary geometric convexity inℝ𝑛 is the same as convexity
with respect to the class of linear functions𝑎1𝑥1+⋯+𝑎𝑛𝑥𝑛; convexitywith respect to the class
of affine linear functions 𝑎0 + 𝑎1𝑥1 +⋯ + 𝑎𝑛𝑥𝑛 is the same notion. The aim of this exercise
is to determine what happens if the functions are replaced with their absolute values.

1. Supposeℱ is the set { |𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛| } of absolute values of linear functions onℝ𝑛.
Describe the ℱ-convex hull of a general compact set.

2. Supposeℱ is the set { |𝑎0 + 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛| } of absolute values of affine linear func-
tions. Describe the ℱ-convex hull of a general compact set.

Exercise 19. Repeat the preceding exercise in the setting ofℂ𝑛 and functions having complex
coefficients:

1. Supposeℱ is the set { |𝑐1𝑧1+⋯+𝑐𝑛𝑧𝑛| } of absolute values of complex linear functions.
Describe the ℱ-convex hull of a general compact set.

2. Supposeℱ is the set { |𝑐0+𝑐1𝑧1+⋯+𝑐𝑛𝑧𝑛| } of absolute values of affine complex linear
functions. Describe the ℱ-convex hull of a general compact set.
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A point and a compact set can be separated by |𝑓| if and only they can be separated by |𝑓|2
or more generally by |𝑓|𝑘 for some positive exponent 𝑘. Accordingly, if ℱ is a class of holo-
morphic functions, then (from the point of view ofℱ-convexity) there is no loss of generality
in assuming that ℱ is closed under the formation of positive integer powers. Many interest-
ing classes of functions have this property or some additional algebraic structure. For exam-
ple, the algebra generated by the coordinate functions is the class of polynomials, which is
the next topic.

3.2.1 Polynomial convexity
Let the domain 𝐺 be all ofℂ𝑛, and letℱ be the set of (absolute values of) polynomials (in the
complex variables). Then ℱ-convexity is called polynomial convexity. (In the setting of ℂ𝑛,
the word “polynomial” is usually understood to mean “holomorphic polynomial,” in other
words, a polynomial in the complex coordinates 𝑧1, . . . , 𝑧𝑛 rather than a polynomial in the
underlying real coordinates of ℝ2𝑛.)
A first observation is that polynomial convexity is no different from convexity with respect

to (absolute values of) entire functions. Indeed, an entire function can be approximated
uniformly on each compact set by polynomials (namely, by partial sums of the Maclaurin
series), so a point can be separated from a compact set by an entire function if and only if the
separation can be achieved by a polynomial.
A second observation is that the polynomial hull of a compact set is a subset of the ordinary

convex hull. Indeed, if a point is separated from a compact set by a real-linear function
Re𝓁(𝑧), then the point is separated equally well by 𝑒Re𝓁(𝑧) and hence by |𝑒𝓁(𝑧)|. Apply the
first observation to the entire function 𝑒𝓁(𝑧). (Alternatively, apply the solution of Exercise 19.)
When 𝑛 = 1, polynomial convexity is a topological property. The basic version of Runge’s

approximation theorem says that if 𝐾 is a compact subset of ℂ (possibly disconnected), and
if 𝐾 has no holes (meaning that ℂ ⧵ 𝐾 is connected), then every function holomorphic in a
neighborhood of𝐾 can be approximated uniformly on𝐾 by (holomorphic) polynomials.3 So
if 𝐾 has no holes, and 𝑞 is a point outside 𝐾, then Runge’s theorem implies that the function
equal to 0 in a neighborhood of 𝐾 and equal to 1 in a neighborhood of 𝑞 can be arbitrarily
well approximated on𝐾∪{𝑞} by polynomials; hence 𝑞 is not in the polynomial hull of𝐾. On
the other hand, if 𝐾 has a hole, then the maximum principle implies that points inside the
hole belong to the polynomial hull of𝐾. In other words, a compact set𝐾 inℂ is polynomially
convex if and only if𝐾 has no holes. For a connected open subset ofℂ, polynomial convexity
is equivalent to simple connectivity (meaning that the complement of the set with respect to
the extended complex numbers is connected).
The situation is much more complicated when the dimension 𝑛 exceeds 1, for polynomial

convexity is no longer determined by a topological condition. For instance, whether or not

3There is a deeper approximation theorem, due to S. N. Mergelyan (1928–2008), stating that the conclusion
follows from the weaker hypothesis that the function to be approximated is continuous on 𝐾 and holomor-
phic on the interior of 𝐾.
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a circle is polynomially convex depends on how that curve is situated with respect to the
complex structure of ℂ𝑛, as the following example shows.
Example 3. (a) In ℂ2, the circle { (cos 𝜃 + 𝑖 sin 𝜃, 0) ∶ 0 ≤ 𝜃 ≤ 2𝜋 } is not polynomially

convex. This circle lies in the complex subspace where the second complex coordinate
is equal to 0. The one-dimensional maximum principle implies that the polynomial hull
of this curve is the disc { (𝑧1, 0) ∶ |𝑧1| ≤ 1 }.

(b) In ℂ2, the circle { (cos 𝜃 + 0𝑖, sin 𝜃 + 0𝑖) ∶ 0 ≤ 𝜃 ≤ 2𝜋 } is polynomially convex. This
circle lies in the real subspace ℝ2 where both complex coordinates happen to be real
numbers. Since the polynomial hull is a subset of the ordinary convex hull, all that needs
to be shown is that points inside the disc bounded by the circle in ℝ2 can be separated
from the circle by polynomials in the complex coordinates. The polynomial 1 − 𝑧21 − 𝑧22
is identically equal to 0 on the circle and takes positive real values at points inside the
circle, so this polynomial exhibits the required separation.

The next example generalizes the preceding idea to produce a general class of polynomially
convex sets.
Example 4. If 𝐾 is a compact subset of the standard real subspace of ℂ𝑛 (that is, 𝐾 ⊂ ℝ𝑛 ⊂
ℂ𝑛), then 𝐾 is polynomially convex.
This statement could be proved by invoking theWeierstrass approximation theorem inℝ𝑛.

Indeed, a point inℝ𝑛⧵𝐾 can be separated from𝐾 by a continuous real-valued function, hence
by a real polynomial; now replace the variables in the polynomial by complex variables. But
the big hammer of the Weierstrass approximation theorem is not really needed. Here is an
elementary constructive argument that yields the required conclusion.
Let 𝑞 be a point outside the compact set 𝐾. The goal is to find an entire function that

separates 𝑞 from 𝐾 (since, as observed above, such an entire function can be approximated
on 𝐾 ∪ {𝑞} by a polynomial). A suitable separating function is the Gaussian

exp
𝑛∑

𝑗=1
−(𝑧𝑗 − Re 𝑞𝑗)2.

To see why this function has the required property, let𝑀(𝑧) denote the absolute value,

exp
𝑛∑

𝑗=1

[
(Im 𝑧𝑗)2 − (Re 𝑧𝑗 − Re 𝑞𝑗)2

]
.

If 𝑞 ∈ ℂ𝑛 ⧵ℝ𝑛, then𝑀(𝑞) = exp
∑𝑛

𝑗=1(Im 𝑞𝑗)2 > 1, and

max
𝑧∈𝐾

𝑀(𝑧) = max
𝑧∈𝐾

exp
𝑛∑

𝑗=1
−(Re 𝑧𝑗 − Re 𝑞𝑗)2 ≤ 1.

If 𝑞 ∈ ℝ𝑛⧵𝐾, then𝑀(𝑞) = 1, and the continuous real-valued expression
∑𝑛

𝑗=1(Re 𝑧𝑗−Re 𝑞𝑗)
2

has a strictly positive lower bound on the compact set 𝐾, somax𝑧∈𝐾𝑀(𝑧) < 1. The required
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separation holds in both cases. (Checking the second case suffices, for the polynomial hull
of 𝐾 is a subset of the convex hull of 𝐾, hence a subset of ℝ𝑛.)
A further generalization is possible. A real subspace ofℂ𝑛 is called totally real if it contains

no nontrivial complex subspace, that is, if every nonzero point 𝑧 in the subspace has the
property that the point 𝑖𝑧 lies outside the subspace. If 𝑥1 and 𝑥2 denote the real parts of
the variables 𝑧1 and 𝑧2, and 𝑦1 and 𝑦2 denote the imaginary parts, then the 𝑥1𝑥2 subspace is
totally real, as are the 𝑥1𝑦2, 𝑦1𝑥2, and 𝑦1𝑦2 subspaces. The real subspace { (𝜆, 𝜆 ) ∶ 𝜆 ∈ ℂ } is
another example of a totally real subspace of ℂ2.
For dimensional reasons, every one-dimensional real subspace of ℂ𝑛 is totally real, but

no real subspace of ℂ𝑛 of real dimension greater than 𝑛 can be totally real. A “typical” real
subspace of ℂ𝑛 of real dimension 𝑛 or less is totally real, in the sense that a generic small
perturbation of a complex line is totally real.4

Exercise 20. Show that every compact subset of a totally real subspace of ℂ𝑛 is polynomially
convex.
Additional polynomially convex sets can be obtained from ones already in hand by apply-

ing the following observation.
Example 5. If 𝐾 is a polynomially convex compact subset of ℂ𝑛, and 𝑝 is a polynomial, then
the graph { (𝑧, 𝑝(𝑧)) ∈ ℂ𝑛+1 ∶ 𝑧 ∈ 𝐾 } is a polynomially convex compact subset of ℂ𝑛+1.
To see why, suppose that 𝛼 ∈ ℂ𝑛 and 𝛽 ∈ ℂ, and the point (𝛼, 𝛽) inℂ𝑛+1 is not in the graph

of 𝑝 over 𝐾. To verify that the point (𝛼, 𝛽) can be separated from the graph by a polynomial,
consider two cases. If 𝛼 ∉ 𝐾, then there is a polynomial of 𝑛 variables that separates 𝛼
from 𝐾 in ℂ𝑛; the same polynomial, viewed as a polynomial on ℂ𝑛+1 that is independent
of 𝑧𝑛+1, separates the point (𝛼, 𝛽) from the graph of 𝑝. On the other hand, if 𝛼 ∈ 𝐾, but
𝛽 ≠ 𝑝(𝛼), then the polynomial 𝑧𝑛+1 − 𝑝(𝑧) is identically equal to 0 on the graph and is not
equal to 0 at (𝛼, 𝛽), so this polynomial separates (𝛼, 𝛽) from the graph.
Some basic examples of polynomially convex sets in ℂ𝑛 are the polynomial polyhedra,

which are intersections of sublevel sets of absolute values of polynomials. The model case is
the unit polydisc { 𝑧 ∈ ℂ𝑛 ∶ |𝑧1| ≤ 1, . . . , |𝑧𝑛| ≤ 1 }. More generally, if 𝑝1, . . . , 𝑝𝑘 are poly-
nomials, then { 𝑧 ∈ ℂ𝑛 ∶ |𝑝1(𝑧)| ≤ 1, . . . , |𝑝𝑘(𝑧)| ≤ 1 } is a closed polynomial polyhedron,
and { 𝑧 ∈ ℂ𝑛 ∶ |𝑝1(𝑧)| < 1, . . . , |𝑝𝑘(𝑧)| < 1 } is an open polynomial polyhedron. A concrete
example is the logarithmically convex, complete Reinhardt domain { (𝑧1, 𝑧2) ∈ ℂ2 ∶ |𝑧1| < 1,
|𝑧2| < 1, and |2𝑧1𝑧2| < 1 }.
Instead of constraining a polynomial 𝑝 by requiring that |𝑝(𝑧)| ≤ 1, one could require

that |𝑝(𝑧)| ≤ 𝑟 for some constant 𝑟, but nothing is gained by this apparently more general
condition. Indeed, if 𝑟 is strictly positive, then |𝑝(𝑧)| ≤ 𝑟 if and only if

|||||
𝑝(𝑧)

𝑟

||||| ≤ 1, so one can

4In the language of algebraic geometry, the Grassmannian of real two-dimensional subspaces of ℂ2 (= ℝ4)
is a manifold of real dimension 4. The real two-planes that happen to be one-dimensional complex sub-
spaces are the same as the complex lines in ℂ2. The set of complex lines in ℂ2 is one-dimensional complex
projective space, a manifold of real dimension 2. Thus the real two-planes that fail to be totally real form a
codimension 2 submanifold of the Grassmannian of all real two-planes in ℂ2.
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make the upper bound equal to 1 simply by rescaling the polynomial. And if 𝑟 = 0, then
|𝑝(𝑧)| ≤ 𝑟 if and only if both |𝑝(𝑧) − 1| ≤ 1 and |𝑝(𝑧) + 1| ≤ 1, so here too the upper bound
can be taken to be 1 at the expense of increasing the number of polynomials.
The observation in the preceding sentence can be rephrased in the language of algebraic

geometry. An (affine) algebraic variety in ℂ𝑛 is the set of common zeros of a finite5 number
of polynomials. Since the zero set of a polynomial can be described by two inequalities for
absolute values of polynomials, every algebraic variety can be realized as a closed polynomial
polyhedron (closed but not in general compact when 𝑛 > 1).
A question arose in class of whether an arbitrary finite set of points in ℂ𝑛 can be realized

as a closed polynomial polyhedron. An affirmative answer follows by showing that every
finite set is an algebraic variety. A finite set in ℂ1 is the zero set of a single polynomial 𝑝,
hence is an algebraic variety. If this set in ℂ1 is viewed as a subset of ℂ𝑛 by making the extra
coordinates equal to 0, then the set is still an algebraic variety inℂ𝑛, being the zero set of the
polynomials 𝑝(𝑧1), 𝑧2, . . . , 𝑧𝑛.
One way to show that an arbitrary finite subset of ℂ𝑛 is an algebraic variety is to reduce

to the preceding case by applying the following lemma about polynomial automorphisms
of ℂ𝑛. In this context, the word “automorphism” means a bijective mapping from ℂ𝑛 onto
itself having holomorphic coordinate functions and a holomorphic inverse mapping. (There
is a holomorphic version of the inverse-function theorem, so the inverse mapping actually
is automatically holomorphic.) A polynomial automorphism has coordinate functions that
are polynomials. (The coordinate functions of the inverse mapping are automatically poly-
nomials.) The polynomial automorphisms evidently form a group under composition.
Lemma 4. Suppose 𝑛 > 1, and suppose given in ℂ𝑛 two finite sets of the same cardinality,
say 𝑤(1), . . . , 𝑤(𝑘) and 𝑤′(1), . . . , 𝑤′(𝑘). There exists a polynomial automorphism of ℂ𝑛 that
maps 𝑤(𝑗) to 𝑤′(𝑗) for every 𝑗 between 1 and 𝑘.
The lemma implies that when 𝑛 > 1, an arbitrary finite subset of ℂ𝑛 can be mapped by

a polynomial automorphism to a subset of a one-dimensional complex subspace. By the
special case considered above, this finite set is an algebraic variety. The inverse image of an
algebraic variety under a polynomial automorphism evidently is again an algebraic variety,
because composing two polynomials gives another polynomial.

Proof of the lemma. A simple induction reduces the problem to the following claim:

If 𝑛 > 1, and 𝐸 is a finite subset of ℂ𝑛, and 𝑤 and 𝑤′ are points outside of 𝐸,
then there exists a polynomial automorphism of ℂ𝑛 that fixes every point of 𝐸
and maps 𝑤 to 𝑤′.

The proof of this claim is a small modification of an argument in a famous article6 by the
5The set of common zeros of an infinite number polynomials can always be expressed as the set of common
zeros of a finite number of polynomials because, according to Hilbert’s basis theorem, every ideal in the
polynomial ring ℂ[𝑧1, 𝑧2,… , 𝑧𝑛] is finitely generated.

6Jean-Pierre Rosay andWalter Rudin, Holomorphic maps fromℂ𝑛 toℂ𝑛, Transactions of the AmericanMath-
ematical Society 310 (1988), no. 1, 47–86. See page 50.
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French-Americanmathematician Jean-Pierre Rosay and theAustrian-Americanmathemati-
cian Walter Rudin (1921–2010). Here are the details.
Since the set 𝐸 is finite, there is a complex hyperplane passing through 𝑤 and disjoint

from 𝐸. This hyperplane is a level set of some linear function 𝐿∶ ℂ𝑛 → ℂ, and the finite
set 𝐿(𝐸) in ℂ does not contain the value 𝐿(𝑤). Let 𝑝 be a polynomial of one variable whose
zeros coincide with the set 𝐿(𝐸) and such that 𝑝(𝐿(𝑤)) = 1. Let 𝑤′′ be an arbitrary point
in ℂ𝑛 other than 𝑤 that lies in the indicated hyperplane; that is, 𝐿(𝑤′′ − 𝑤) = 0. The poly-
nomial map sending a point 𝑧 in ℂ𝑛 to the image 𝑧 + 𝑝(𝐿(𝑧))(𝑤′′ − 𝑤) is an automorphism
(namely, a polynomial shear); the inverse map is obtained by changing the sign in the sum.
The properties of the polynomial 𝑝 imply that the indicated polynomial automorphism fixes
every point of 𝐸 and sends 𝑤 to 𝑤′′.
Now consider two hyperplanes disjoint from 𝐸, one passing through the point 𝑤 and the

other passing through the point 𝑤′. If necessary, rotate one of the hyperplanes slightly to
ensure that the two hyperplanes intersect, and let 𝑤′′ be some point in the intersection. By
the construction in the preceding paragraph, there is a polynomial automorphism ofℂ𝑛 that
fixes every point of𝐸 andmaps𝑤 to𝑤′′, and there is a second polynomial automorphism that
fixes every point of 𝐸 and maps𝑤′′ to𝑤′. Compose these two polynomial automorphisms to
obtain the required one.

The preceding argument shows that a finite set in ℂ𝑛 can be realized as the common zero
set of 𝑛 polynomials. The fact that every finite set is an algebraic variety can alternatively be
established without invoking the lemma, but at the expense of introducing an unnecessarily
large number of polynomials. Indeed, a single point 𝑤 in ℂ𝑛 is the common zero set of the
polynomials 𝑧1−𝑤1, 𝑧2−𝑤2, . . . , 𝑧𝑛−𝑤𝑛, hence is an algebraic variety. View this observation
as the basis step of an induction. It suffices to show now that the union of two algebraic
varieties is an algebraic variety. If the first variety is the common zero set of polynomials
𝑝1, . . . , 𝑝𝑗, and the second variety is the common zero set of polynomials 𝑞1, . . . , 𝑞𝑘, then
the union of the varieties is the common zero set of the product polynomials 𝑝𝓁𝑞𝑚, where
1 ≤ 𝓁 ≤ 𝑗 and 1 ≤ 𝑚 ≤ 𝑘.
A polynomial polyhedron in ℂ𝑛 is polynomially convex, since a point in the complement

is separated from the polyhedron by at least one of the defining polynomials. Notice that
the number of polynomials defining the polyhedron is often larger than the dimension 𝑛. (If
the polyhedron is compact and nonvoid, then the number 𝑘 of polynomials cannot be less
than 𝑛, but proving this property requires some tools not yet introduced.7) A standard way to
force a polynomial polyhedron to be bounded is take the intersection with a polydisc (that is,
include in the set of defining polynomials the function 𝑧𝑗∕𝑅 for some large 𝑅 and for each 𝑗
from 1 to 𝑛).

7If 𝑤 is a point of the polyhedron, then the 𝑘 sets { 𝑧 ∈ ℂ𝑛 ∶ 𝑝𝑗(𝑧) − 𝑝𝑗(𝑤) = 0 } are analytic varieties
of codimension 1 that intersect in an analytic variety of dimension at least 𝑛 − 𝑘 that is contained in the
polyhedron. If 𝑘 < 𝑛, then this analytic variety has positive dimension, but there are no compact analytic
varieties of positive dimension.
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A proposition from single-variable complex analysis, Hilbert’s lemniscate theorem,8 says
that every simple closed curve in ℂ can be approximated by a level curve of the absolute
value of a polynomial (that is, by a lemniscate9). More precisely, Hilbert’s statement is that if
𝛾1 and 𝛾2 are two simple closed curves, with 𝛾2 inside 𝛾1, then there is a lemniscate inside 𝛾1
that surrounds 𝛾2. Equivalently, if𝐾 is a compact, polynomially convex subset ofℂ, and𝑈 is
an open neighborhood of 𝐾, then there is a polynomial 𝑝 such that |𝑝(𝑧)| < 1 when 𝑧 ∈ 𝐾
and |𝑝(𝑧)| > 1 when 𝑧 ∈ ℂ ⧵𝑈. The theorem generalizes to higher dimension as follows.

Theorem 9. A polynomially convex set in ℂ𝑛 can be approximated by polynomial polyhedra:

(a) If 𝐾 is a compact polynomially convex set, and𝑈 is an open neighborhood of 𝐾, then there
is an open polynomial polyhedron 𝑃 such that 𝐾 ⊂ 𝑃 ⊂ 𝑈.

(b) If 𝐺 is a polynomially convex open set, then𝐺 can be expressed as the union of an increasing
sequence of open polynomial polyhedra.

Proof. (a) Being bounded, the set 𝐾 is contained in the interior of some closed polydisc 𝐷.
If 𝐷 is a subset of 𝑈, then the interior of 𝐷 is already the required polyhedron. On the
other hand, if 𝐷 ⧵𝑈 is nonvoid, then for each point 𝑤 in 𝐷 ⧵𝑈, there is a polynomial 𝑝
that separates 𝑤 from 𝐾. This polynomial can be multiplied by a suitable constant to
guarantee that max{ |𝑝(𝑧)| ∶ 𝑧 ∈ 𝐾 } < 1 < |𝑝(𝑤)|. Hence the set { 𝑧 ∶ |𝑝(𝑧)| < 1 }
contains𝐾 and is disjoint from a neighborhood of𝑤. Since the set𝐷⧵𝑈 is compact, there
are finitelymany polynomials 𝑝1, . . . , 𝑝𝑘 such that the polyhedron

⋂𝑘
𝑗=1{ 𝑧 ∶ |𝑝𝑗(𝑧)| < 1 }

contains 𝐾 and does not intersect 𝐷 ⧵ 𝑈. Cutting down this polyhedron by intersecting
with the interior of 𝐷 gives a new polyhedron that contains 𝐾 and is contained in 𝑈.

(b) Exhaust𝐺 by an increasing sequence of compact sets. The polynomial hulls of these sets
form another increasing sequence of compact subsets of 𝐺 (under the hypothesis that
𝐺 is polynomially convex). Discarding some of the sets (if necessary) and renumbering
produces an exhaustion of 𝐺 by a sequence {𝐾𝑗}∞𝑗=1 of polynomially convex compact sets
such that each 𝐾𝑗 is contained in the interior of 𝐾𝑗+1. The first part of the theorem then
provides a sequence {𝑃𝑗}∞𝑗=1 of open polynomial polyhedra such that 𝐾𝑗 ⊂ 𝑃𝑗 ⊂ 𝐾𝑗+1 for
every 𝑗.

In Hilbert’s lemniscate theorem in ℂ1, only a single polynomial is needed to determine a
polynomial polyhedron that approximates a prescribed polynomially convex set. An interest-
ing question is whether 𝑛 polynomials suffice to define an approximating polyhedron in ℂ𝑛.
8D. Hilbert, Ueber die Entwickelung einer beliebigen analytischen Function einer Variabeln in eine un-
endliche nach ganzen rationalen Functionen fortschreitende Reihe, Nachrichten von der Königlichen
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1897) 63–70. See pages
67–68.

9The Latin adjective lemniscatus has the meaning of “decorated with ribbons.” The derived English word
“lemniscate” originally applied to a ribbon-like figure-eight curve, such as the set of values of the complex
variable 𝑧 for which |𝑧2 − 1| = 1. The word subsequently acquired the more general meaning of the level
set of the absolute value of a polynomial of arbitrary degree.
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A partial result in this direction has been known for over half a century. A polyhedron can
be a disconnected set, and Errett Bishop (1928–1983) showed10 that the approximation can
be accomplished by a set that is the union of some of the connected components of a polyhe-
dron defined by 𝑛 polynomials. Additional quantitative information about the polynomials
is known.11 For sets with enough symmetry in two dimensions12 and in 𝑛 dimensions,13 an
affirmative answer is known, but the general case remains open.
The theory of polynomial convexity is sufficiently mature that there exists a good refer-

ence book,14 but determining the polynomial hull of even quite simple sets in ℂ2 remains
a difficult problem. The following example shows that the union of two disjoint, compact,
polynomially convex sets inℂ2 need not be polynomially convex (in contrast to the situation
in ℂ1).
Example 6 (Kallin,15 1965). Let 𝐾1 be { (𝑒𝑖𝜃, 𝑒−𝑖𝜃) ∈ ℂ2 ∶ 0 ≤ 𝜃 < 2𝜋 }, and let 𝐾2 be
{ (2𝑒𝑖𝜃, 1

2
𝑒−𝑖𝜃) ∈ ℂ2 ∶ 0 ≤ 𝜃 < 2𝜋 }. Both of the sets 𝐾1 and 𝐾2 are polynomially convex

in view of Exercise 20, since 𝐾1 lies in the totally real subspace of ℂ2 in which 𝑧1 = 𝑧2, and
𝐾2 lies in the totally real subspace in which 𝑧1∕4 = 𝑧2. The union 𝐾1 ∪ 𝐾2 is not polynomi-
ally convex, for the polynomial hull contains the set { (𝜆, 1∕𝜆) ∈ ℂ2 ∶ 1 < |𝜆| < 2 }, which
can be thought of as an “analytic annulus.” Indeed, if 𝑝(𝑧1, 𝑧2) is a polynomial on ℂ2 whose
absolute value is less than 1 on 𝐾1 ∪ 𝐾2, then 𝑝(𝜆, 1∕𝜆) is a holomorphic function on ℂ ⧵ {0}
whose absolute value is less than 1 on the boundary of the annulus { 𝜆 ∈ ℂ ∶ 1 < |𝜆| < 2 }
and hence (by the one-dimensional maximum principle) on the interior of the annulus.
Moreover, the polynomial hull of 𝐾1 ∪ 𝐾2 is precisely the set { (𝜆, 1∕𝜆) ∶ 1 ≤ |𝜆| ≤ 2 }.

To see why, consider the polynomial 1 − 𝑧1𝑧2. Since this polynomial is identically equal to 0
on 𝐾1 ∪ 𝐾2, the only points that have a chance to lie in the polynomial hull of 𝐾1 ∪ 𝐾2 are
points where 1 − 𝑧1𝑧2 = 0. If such a point additionally has first coordinate with absolute
value greater than 2, then the polynomial 𝑧1 separates that point from 𝐾1 ∪𝐾2. On the other
hand, if a point in the zero set of 1− 𝑧1𝑧2 has first coordinate with absolute value less than 1,
then the second coordinate has absolute value greater than 1, so the polynomial 𝑧2 separates
the point from 𝐾1 ∪ 𝐾2.
The preceding example shows that in general, polynomial convexity is not preserved by

taking unions. Nonetheless, there are some useful situations in which new polynomially
convex sets can be obtained by taking unions.

10Errett Bishop, Mappings of partially analytic spaces, American Journal of Mathematics 83 (1961), number 2,
209–242.

11Stéphanie Nivoche, Polynomial convexity, special polynomial polyhedra and the pluricomplex Green func-
tion for a compact set in ℂ𝑛, Journal de Mathématiques Pures et Appliquées (9) 91 (2009), no. 4, 364–383.

12Thomas Bloom, Norman Levenberg, and Yu. Lyubarskii, A Hilbert lemniscate theorem in ℂ2, Annales de
l’Institut Fourier 58 (2008), no. 6, 2191–2220.

13Alexander Rashkovskii and Vyacheslav Zakharyuta, Special polyhedra for Reinhardt domains, Comptes Ren-
dus Mathématique, Académie des Sciences, Paris 349, issues 17–18, (2011) 965–968.

14Edgar Lee Stout, Polynomial Convexity, Birkhäuser Boston, 2007.
15EvaKallin, Polynomial convexity: The three spheres problem, Proceedings of theConference inComplexAnal-

ysis (Minneapolis, 1964), pp. 301–304, Springer, Berlin, 1965.
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Proposition 10. If 𝐾 is a polynomially convex, compact set in ℂ𝑛, then the union of 𝐾 and a
finite set of points is polynomially convex.

Proof. The result follows from an evident induction on the number of points as soon as the
basis step is accomplished. Suppose, then, that𝑤 is a specified point outside of 𝐾. What will
be shown is that if𝑤′ is some other point outside of 𝐾, then there exists a polynomial 𝑝 such
that

max{ |𝑝(𝑧)| ∶ 𝑧 ∈ 𝐾 ∪ {𝑤} } < 1 < |𝑝(𝑤′)|.

In other words, an arbitrary point 𝑤′ outside 𝐾 ∪ {𝑤} can be separated from 𝐾 ∪ {𝑤} by a
polynomial.
There certainly exists a polynomial 𝑝1 such that 𝑝1(𝑤′) = 1 and 𝑝1(𝑤) = 0. Let𝑀 denote

max{ |𝑝1(𝑧)| ∶ 𝑧 ∈ 𝐾 }. By the polynomial convexity of 𝐾, there is a polynomial 𝑝2 such that

max{ |𝑝2(𝑧)| ∶ 𝑧 ∈ 𝐾 } < |𝑝2(𝑤′)|.

Multiplying 𝑝2 by a suitable constant shows that there is no loss of generality in supposing
that

max{ |𝑝2(𝑧)| ∶ 𝑧 ∈ 𝐾 } < 1 < |𝑝2(𝑤′)|.

After making that normalization, choose a natural number 𝑘 such that

max{ |𝑝𝑘2 (𝑧)| ∶ 𝑧 ∈ 𝐾 } < 1
2𝑀.

The required polynomial 𝑝 is the product 𝑝1𝑝𝑘2 . Indeed, |𝑝(𝑤
′)| = |𝑝𝑘2 (𝑤

′)| > 1, and 𝑝(𝑤) =
0, andmax{ |𝑝(𝑧)| ∶ 𝑧 ∈ 𝐾 } < 1∕2.

Exercise 21. Show that if 𝐾 is a polynomially convex compact set in ℂ𝑛, and 𝑤(1), . . . , 𝑤(𝑘)
are distinct points in the complement of 𝐾, and 𝑐(1), . . . , 𝑐(𝑘) are complex numbers, and
𝜀 is a positive real number, then there exists a polynomial 𝑝 such that when 1 ≤ 𝑗 ≤ 𝑘, the
polynomial 𝑝 takes the value 𝑐(𝑗) at the point 𝑤(𝑗), andmax{ |𝑝(𝑧)| ∶ 𝑧 ∈ 𝐾 } < 𝜀.

Proposition 11. If 𝐾1 and 𝐾2 are disjoint, compact, convex sets in ℂ𝑛, then the union 𝐾1 ∪ 𝐾2
is polynomially convex.

Proof. The disjoint convex sets 𝐾1 and 𝐾2 can be separated by a real hyperplane, or equiv-
alently by the real part of a complex linear function 𝐿. The geometric picture is that 𝐿
projects ℂ𝑛 onto a complex line (a one-dimensional complex subspace). The sets 𝐿(𝐾1) and
𝐿(𝐾2) are then disjoint, compact, convex sets in ℂ.
Suppose now that 𝑤 is a point outside of 𝐾1 ∪ 𝐾2. The goal is to separate 𝑤 from 𝐾1 ∪ 𝐾2

by a polynomial. There are two cases, depending on the location of 𝐿(𝑤).
If 𝐿(𝑤) ∉ 𝐿(𝐾1) ∪ 𝐿(𝐾2), then Runge’s theorem provides a polynomial 𝑝 of one complex

variable such that |𝑝(𝐿(𝑤))| > 1, and |𝑝(𝑧)| < 1 when 𝑧 ∈ 𝐿(𝐾1) ∪ 𝐿(𝐾2). In other words,
the composite polynomial function 𝑝◦𝐿 separates 𝑤 from 𝐾1 ∪ 𝐾2 in ℂ𝑛.
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If 𝐿(𝑤) ∈ 𝐿(𝐾1) ∪ 𝐿(𝐾2), then suppose without loss of generality that 𝐿(𝑤) ∈ 𝐿(𝐾1). Since
𝑤 ∉ 𝐾1, and 𝐾1 is polynomially convex, there is a polynomial 𝑝 on ℂ𝑛 such that |𝑝(𝑤)| > 1
and |𝑝(𝑧)| < 1∕3 when 𝑧 ∈ 𝐾1. Let 𝑀 be an upper bound for |𝑝| on the compact set 𝐾2.
Applying Runge’s theorem in ℂ produces a polynomial 𝑞 of one variable such that |𝑞| <
1∕(3𝑀) on 𝐿(𝐾2) and 2∕3 ≤ |𝑞| ≤ 1 on 𝐿(𝐾1). The claim now is that the product polynomial
𝑝⋅(𝑞◦𝐿) separates𝑤 from𝐾1∪𝐾2. Indeed, on𝐾1, the factor𝑝 has absolute value less than 1∕3,
and the factor 𝑞◦𝐿 has absolute value no greater than 1; on𝐾2, the factor𝑝 has absolute value
at most𝑀, and the factor 𝑞◦𝐿 has absolute value less than 1∕(3𝑀); and at𝑤, the factor 𝑝 has
absolute value exceeding 1, and the factor 𝑞◦𝐿 has absolute value at least 2∕3.

The preceding proposition is a special case of a separation lemma of Eva Kallin, who
showed in the paper cited above that the union of three pairwise disjoint closed balls in ℂ𝑛

is always polynomially convex. The question of whether the union of four pairwise disjoint
closed balls is always polynomially convex remains open after more than half a century. The
problem is a subtle one, for Kallin constructed an example of three pairwise disjoint closed
polydiscs in ℂ3 whose union is not polynomially convex.
Runge’s theorem in dimension 1 reveals that polynomial convexity is closely connected

with the approximation of holomorphic functions by polynomials. The following theorem,
an analogue of Runge’s theorem in higher dimension, is known as the Oka–Weil theorem
[named after the Japanese mathematician Kiyoshi Oka (1901–1978) and the French mathe-
matician André Weil (1906–1998)].

Theorem 12 (Oka–Weil). If𝐾 is a compact, polynomially convex set inℂ𝑛, then every function
holomorphic in a neighborhood of 𝐾 can be approximated uniformly on 𝐾 by (holomorphic)
polynomials.

The proof has to be deferred until later, after some theory is developed about solvability of
the inhomogeneous multivariable Cauchy–Riemann equations.
Exercise 22. Give an example of a compact set 𝐾 in ℂ2 that is not polynomially convex, yet
every function holomorphic in a neighborhood of𝐾 can be approximated uniformly on𝐾 by
polynomials.

3.2.2 Linear and rational convexity
The preceding examples involve functions that are globally defined on the whole of ℂ𝑛. But
in many interesting cases, the class of functions depends on the region under consideration.
For instance, suppose that𝐺 is an open set inℂ𝑛, andℱ is the class of those linear fractional

functions
𝑎0 + 𝑎1𝑧1 +⋯ + 𝑎𝑛𝑧𝑛
𝑏0 + 𝑏1𝑧1 +⋯ + 𝑏𝑛𝑧𝑛

that happen to be holomorphic on𝐺 (in otherwords, the denominator is nonzero at all points
inside𝐺). Amore precise notation isℱ𝐺, but typically the open set𝐺 is clear from context. By

48



3 Convexity

the solution of Exercise 19, every convex set is ℱ-convex. A simple example of a nonconvex
but ℱ-convex open set is ℂ2 ⧵ { (𝑧1, 𝑧2) ∈ ℂ2 ∶ 𝑧2 = 0 }. Indeed, if 𝐾 is a compact subset of
this open subset of ℂ2, then the function 1∕𝑧2 is bounded on 𝐾, so 𝐾ℱ stays away from the
boundary of the open set.
An open set 𝐺 is convex in the ordinary geometric sense if through each boundary point

of 𝐺 there passes a real hyperplane that does not intersect 𝐺 (a supporting hyperplane). The
claim now is that an open set𝐺 inℂ𝑛 isℱ-convex if and only if through each boundary point
of 𝐺 there passes a complex hyperplane that does not intersect 𝐺.
For the proof, suppose first that 𝐺 is ℱ-convex, and let 𝑤 be a point in the boundary of 𝐺.

If 𝐾 is a compact subset of 𝐺, then 𝐾ℱ is again a compact subset of 𝐺, so to every point 𝑤′

in 𝐺 sufficiently close to 𝑤 there corresponds a linear fractional function 𝑓 in ℱ such that
𝑓(𝑤′) = 1 > max{ |𝑓(𝑧)| ∶ 𝑧 ∈ 𝐾 }. If 𝐿 denotes the difference between the numerator of 𝑓
and the denominator of 𝑓, then 𝐿(𝑧) = 0 at a point 𝑧 in 𝐺 if and only if 𝑓(𝑧) = 1. Hence the
zero set of 𝐿, which is a complex hyperplane, passes through 𝑤′ and does not intersect 𝐾.
Multiply 𝐿 by a suitable constant to ensure that the vector consisting of the coefficients of 𝐿
has length 1.
Now exhaust 𝐺 by an increasing sequence {𝐾𝑗} of compact sets, and apply the preceding

construction to obtain a sequence {𝑤𝑗} of points in 𝐺 converging to 𝑤 and a sequence {𝐿𝑗} of
normalized first-degree polynomials such that 𝐿𝑗(𝑤𝑗) = 0, the zero set of 𝐿𝑗 being disjoint
from 𝐾𝑗. Since the set of vectors in ℂ𝑛 of length 1 is compact, taking the limit of a suitable
subsequence produces a complex hyperplane that passes through the boundary point𝑤 and
does not intersect the open set 𝐺.
Conversely, a supporting complex hyperplane at a boundary point 𝑤 is the zero set of a

certain first-degree polynomial 𝐿, and 1∕𝐿 is then a linear fractional function that blows up
at 𝑤 and is holomorphic on 𝐺. Therefore the ℱ-convex hull of a compact set 𝐾 in 𝐺 stays
away from𝑤. Since𝑤 is arbitrary, the hull𝐾ℱ stays away from the whole boundary of𝐺. The
coordinate functions are elements of ℱ, so 𝐾ℱ is bounded too. Consequently, the hull 𝐾ℱ is
compact. Since 𝐾 is arbitrary, the domain 𝐺 is ℱ-convex.
The property ofℱ𝐺-convexity whenℱ𝐺 is the indicated class of linear fractional functions

that are holomorphic on 𝐺 is known as weak linear convexity. The more restrictive property
of linear convexity means that the complement of the domain can be written as a union of
complex hyperplanes. The terminology is not completely standardized, however, so one has
to check each author’s definitions.
There exist weakly linearly convex domains that are not linearly convex. The idea can

be seen already for the notion of ordinary convexity in ℝ2. Take an equilateral triangle of
side length 1 and erase a middle portion, leaving in the corners three equilateral triangles of
side length slightly less than 1∕2. There is a supporting line through each boundary point of
this disconnected set, but there is no line through the centroid that is disjoint from the three
triangles. This idea can be implemented in ℂ2 to construct a connected, weakly linearly
convex domain that is not linearly convex.16

16A reference is Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, Complex Convexity and Analytic
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Next consider general rational functions (quotients of polynomials). A compact set𝐾 inℂ𝑛

is called rationally convex if every point 𝑤 outside 𝐾 can be separated from 𝐾 by a rational
function that is holomorphic on 𝐾 ∪ {𝑤}, that is, if there is a rational function 𝑓 such that
|𝑓(𝑤)| > max{ |𝑓(𝑧)| ∶ 𝑧 ∈ 𝐾 }. In this definition, the holomorphicity of 𝑓 at the point 𝑤 is
unimportant, for if 𝑓(𝑤) is undefined, then one can slightly perturb the coefficients of 𝑓 to
make |𝑓(𝑤)| a large finite number without changing the values of 𝑓 on 𝐾 very much.
Example 7. Every compact set 𝐾 in ℂ is rationally convex. Indeed, if 𝑤 is a point outside 𝐾,
then the rational function 1∕(𝑧 − 𝑤) blows up at 𝑤, so 𝑤 is not in the rationally convex hull
of 𝐾. Indeed, for a suitably small positive 𝜀, the rational function 1∕(𝑧 − 𝑤 − 𝜀) has larger
absolute value at 𝑤 than anywhere on 𝐾.
There is some awkwardness in talking about rational functions of two or more variables,

because the singularities can be either poles (where the absolute value blows up) or points
of indeterminacy (like the origin for the function 𝑧1∕𝑧2). A convenient device is to rephrase
the notion of rational convexity by using only polynomials, as follows.
The notion of polynomial convexity is based on separating a point𝑤 from a compact set𝐾

by the absolute value of a polynomial; introducing the absolute value is natural in order to
write inequalities. One can, however, consider the weaker separation property that a point𝑤
is separated from a compact set𝐾 if there is a polynomial 𝑝 such that the image of𝑤 under 𝑝
is not contained in the image of 𝐾 under 𝑝. This weaker separation property turns out to be
identical to the notion of rational convexity.
Indeed, if the point 𝑝(𝑤) does not belong to the set 𝑝(𝐾), then for every sufficiently small

positive 𝜀, the function 1∕(𝑝(𝑧)−𝑝(𝑤)−𝜀) is a rational function of 𝑧 that is holomorphic in a
neighborhood of𝐾 and has larger absolute value at𝑤 than anywhere on𝐾. Conversely, if𝑓 is
a rational function, holomorphic on 𝐾 ∪ {𝑤}, whose absolute value separates𝑤 from 𝐾, then
the function 1∕(𝑓(𝑧)−𝑓(𝑤)) is a rational function of 𝑧 that is holomorphic on𝐾 and singular
at 𝑤. This function can be rewritten as a quotient of polynomials, and the denominator will
be a polynomial that is zero at 𝑤 and nonzero on 𝐾. Thus, a point 𝑤 is in the rationally
convex hull of a compact set 𝐾 if and only if every polynomial that is equal to zero at 𝑤 also
has a zero on 𝐾.
Exercise 23. The rationally convex hull of a compact subset of ℂ𝑛 is again a compact subset
of ℂ𝑛.
Example 8 (the Hartogs triangle). The open set { (𝑧1, 𝑧2) ∈ ℂ2 ∶ |𝑧1| < |𝑧2| < 1 } is convex
with respect to the linear fractional functions, because through each boundary point passes
a complex line that does not intersect the domain. Indeed, the line on which 𝑧2 = 0 serves at
the origin (0, 0); at any other boundary point where the two coordinates have equal absolute
value, there is some value of 𝜃 for which a suitable line is the one that sends the complex
parameter 𝜆 to (𝜆, 𝑒𝑖𝜃𝜆); and at a boundary point where the second coordinate has absolute
value equal to 1, there is some value of 𝜃 such that a suitable line is the one onwhich 𝑧2 = 𝑒𝑖𝜃.

Functionals, Birkhäuser, 2004, Example 2.1.7.
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In particular, the openHartogs triangle is a rationally convex domain, since there aremore
rational functions than there are linear fractions. The open Hartogs triangle is certainly
not polynomially convex. Indeed, consider the circle { (0, 1

2
𝑒𝑖𝜃) ∶ 0 ≤ 𝜃 < 2𝜋 }. No point

of the disc bounded by this circle can be separated from the circle by a polynomial, so the
polynomial hull of the circle with respect to the openHartogs triangle is not a compact subset
of the triangle.
Next consider the closed Hartogs triangle, the set where |𝑧1| ≤ |𝑧2| ≤ 1. The rationally

convex hull of this compact set is the whole closed bidisc. Indeed, if 𝑝 is a polynomial having
no zero on the closed Hartogs triangle, then by continuity, 𝑝 has no zero in an open neigh-
borhood of the closed triangle. Consequently, the reciprocal 1∕𝑝 is holomorphic in some
Hartogs figure, so by Theorem 3, the function 1∕𝑝 extends to be holomorphic on the whole
(closed) bidisc. Therefore the polynomial 𝑝 cannot have any zeros in the bidisc. Accordingly,
the rational hull of the closed Hartogs triangle contains the whole bidisc. The rational hull
cannot contain any other points, since the rational hull is a subset of the convex hull.

3.2.3 Holomorphic convexity
Suppose that𝐺 is a domain inℂ𝑛, andℱ is the class of holomorphic functions on𝐺, which is
commonly denoted 𝒪(𝐺). Then ℱ-convexity, that is, 𝒪(𝐺)-convexity, is called holomorphic
convexity (with respect to 𝐺).
Example 9. When 𝐺 = ℂ𝑛, holomorphic convexity is equivalent to polynomial convexity,
since every entire function can be approximated uniformly on compact sets by polynomials
(namely, by partial sums of the Maclaurin series).
If 𝐺1 ⊂ 𝐺2, and 𝐾 is a compact subset of 𝐺1, then the holomorphically convex hull of 𝐾

with respect to 𝐺1 evidently is a subset of the holomorphically convex hull of 𝐾 with respect
to 𝐺2 (because there are more holomorphic functions on 𝐺1 than there are on the larger
domain 𝐺2). So if 𝐾 is 𝒪(𝐺2) convex, then 𝐾 is 𝒪(𝐺1) convex. In particular, a polynomially
convex compact set is holomorphically convex with respect to every domain 𝐺 that contains
it; so is a convex set.
Example 10. Let 𝐾 be the unit circle { 𝑧 ∈ ℂ ∶ |𝑧| = 1 } in the complex plane.

(a) Suppose that 𝐺 is the whole plane. The𝒪(𝐺)-convex hull of 𝐾 is the closed unit disc (by
the maximum principle).

(b) Suppose that 𝐺 is the punctured plane { 𝑧 ∈ ℂ ∶ 𝑧 ≠ 0 }. Then 𝐾 is an 𝒪(𝐺)-convex set
(because the function 1∕𝑧, which is holomorphic on 𝐺, separates points inside the circle
from points on the circle).

This example demonstrates that the notion of holomorphic convexity of a compact subset 𝐾
of 𝐺 depends both on 𝐾 and on 𝐺.

51



3 Convexity

Exercise 24. Show that if 𝐾 is a holomorphically convex compact subset of 𝐺, and 𝑝 is an
arbitrary point of 𝐺, then the union 𝐾 ∪ {𝑝} is a holomorphically convex compact subset
of 𝐺.
The next theorem solves the problem of characterizing holomorphically convex domains

in ℂ𝑛. Although the theorem is valid for all values of 𝑛, the interesting case occurs when
𝑛 > 1, for Example 7 implies that every domain in the complex plane is holomorphically
convex. The theory of holomorphic convexity is due to Henri Cartan and Peter Thullen.17

Theorem 13. The following properties of a domain 𝐺 in ℂ𝑛 are equivalent.

1. The domain𝐺 is holomorphically convex (that is, for every compact set𝐾 contained in𝐺,
the holomorphically convex hull 𝐾𝒪(𝐺) is again a compact subset of 𝐺).

2. For every sequence {𝑝𝑗} of points in𝐺 having no accumulation point inside𝐺, there exists
a holomorphic function 𝑓 on 𝐺 such that lim𝑗→∞ |𝑓(𝑝𝑗)| = ∞.

3. For every sequence {𝑝𝑗} of points in𝐺 having no accumulation point inside𝐺, there exists
a holomorphic function 𝑓 on 𝐺 such that sup𝑗 |𝑓(𝑝𝑗)| = ∞.

4. For every compact set 𝐾 contained in 𝐺 and for every unit vector 𝑣 in ℂ𝑛, the distance
from 𝐾 to the boundary of 𝐺 in the direction 𝑣 is equal to the distance from 𝐾𝒪(𝐺) to the
boundary of 𝐺 in the direction 𝑣.

5. For every compact set𝐾 contained in𝐺, the distance from𝐾 to the boundary of 𝐺 is equal
to the distance from 𝐾𝒪(𝐺) to the boundary of 𝐺.

6. The domain 𝐺 is a weak domain of holomorphy.

7. The domain 𝐺 is a domain of holomorphy.

Precise definitions of the final two items are needed before proving the theorem.

Domains of holomorphy

Cartan and Thullen define a domain of holomorphy to be a domain on which there exists
a holomorphic function that does not extend holomorphically to any larger domain.18 But
to Cartan and Thullen, the word “domain” means a Riemann domain spread over ℂ𝑛 (the
higher-dimensional analogue of a Riemann surface). To formulate the concept of domain of
holomorphy without introducing the machinery of manifolds requires some acrobatics. The
next two examples illustrate why the definition is necessarily convoluted.

17See the article cited on page 20.
18“Einen Bereich 𝔅 nennen wir einen Regularitätsbereich (domaine d’holomorphie), falls es eine in 𝔅 ein-

deutige und reguläre Funktion 𝑓(𝑧1,… , 𝑧𝑛) gibt derart, daß jeder 𝔅 enthaltende Bereich 𝔅′, in dem
𝑓(𝑧1,… , 𝑧𝑛) eindeutig und regulär ist, notwendig mit𝔅 identisch ist.” Cartan and Thullen, loc. cit., p. 618.
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Example 11. There is a holomorphic branch of the single-variable function
√
𝑧 on the slit

plane ℂ ⧵ { 𝑧 ∶ Im 𝑧 = 0 and Re 𝑧 ≤ 0 }. This function is discontinuous at all points of the
negative part of the real axis, so the function certainly does not extend to be holomorphic in
a neighborhood of any of these points. But the function

√
𝑧 does continue holomorphically

across each nonzero boundary point from one side (indeed, from either side). The natural
domain of definition of

√
𝑧 is not the slit plane but rather a two-sheeted Riemann surface.

In the preceding example in ℂ1, there are functions that fail to admit extension to a full
neighborhood of any boundary point yet admit one-sided extensions across some boundary
points. Nonetheless, there are holomorphic functions on the slit plane that fail to admit even
one-sided extensions. (Apply the Weierstrass theorem to construct a holomorphic function
on the slit plane whose zeros accumulate at every point of the slit from both sides.) So the
example is not decisive. In the following example19 in ℂ2, there is a part of the boundary
across which all holomorphic functions admit one-sided extension, yet some holomorphic
function fails to admit extension to a full neighborhood of those boundary points.
Example 12. Consider the following three product domains. Let 𝐺1 be the Cartesian product
of the open unit disk in the 𝑧2 plane with the 𝑧1 plane slit along the negative part of the
real axis. Let 𝐺2 be the Cartesian product of the complement of the closed unit disk in the
𝑧2 plane with the 𝑧1 plane slit along the positive part of the real axis. Let 𝐺3 be the Cartesian
product of the whole 𝑧2 plane with the open upper half of the 𝑧1 plane. Notice that 𝐺1 is
disjoint from 𝐺2, but 𝐺3 intersects both 𝐺1 and 𝐺2. Accordingly, the union 𝐺1 ∪ 𝐺2 ∪ 𝐺3 is a
connected open subset of ℂ2. An alternative description of this domain is the complement
in ℂ2 of the union of the following three closed subsets:

{ (𝑧1, 𝑧2) ∶ Im 𝑧1 = 0 and Re 𝑧1 ≤ 0 and |𝑧2| ≤ 1 }
and { (𝑧1, 𝑧2) ∶ Im 𝑧1 = 0 and Re 𝑧1 ≥ 0 and |𝑧2| ≥ 1 }
and { (𝑧1, 𝑧2) ∶ Im 𝑧1 ≤ 0 and |𝑧2| = 1 }.

The first claim is that every holomorphic function on𝐺1∪𝐺2∪𝐺3 extends holomorphically
from the open subset whereRe 𝑧1 < 0 and Im 𝑧1 > 0 and 𝑧2 is arbitrary to the open half-space
where Re 𝑧1 < 0 and Im 𝑧1 is arbitrary and 𝑧2 is arbitrary. In particular, all holomorphic
functions admit extension from one side across the boundary points where Re 𝑧1 < 0 and
Im 𝑧1 = 0 and |𝑧2| ≤ 1. Indeed, suppose 𝑓 is a holomorphic function on 𝐺1 ∪ 𝐺2 ∪ 𝐺3. If the
value of 𝑧2 is arbitrary, and the radius 𝑟 is strictly greater than max{1, |𝑧2|}, and Re 𝑧1 < 0,
then the integral

1
2𝜋𝑖 ∫|𝜁|=𝑟

𝑓(𝑧1, 𝜁)
𝜁 − 𝑧2

𝑑𝜁

makes sense and determines a holomorphic function of 𝑧1 and 𝑧2. Since the value of the
integral does not change when 𝑟 increases, the integral defines a holomorphic function in
19The example is modified from one in the book of B. V. Shabat, Introduction to Complex Analysis: Part II,

Functions of Several Variables, translated from the Russian by J. S. Joel, American Mathematical Society,
1992. See Chapter III, §12, subsection 33, pages 177–178.
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the half-space where Re 𝑧1 < 0. In the part of the half-space where Im 𝑧1 > 0, the integral
recovers the value 𝑓(𝑧1, 𝑧2) of the original function (by the single-variable Cauchy integral
formula). Therefore the integral defines the required extension of 𝑓 to the half-space. (This
argument is the same as in the discussion of the Hartogs phenomenon, and Theorem 3 could
be quoted instead of repeating the argument.)
The second claim is the existence of a holomorphic function on 𝐺1 ∪𝐺2 ∪𝐺3 that does not

admit a two-sided extension across any boundary point where Re 𝑧1 < 0 and Im 𝑧1 = 0 and
|𝑧2| < 1. To construct such a function, start with the principal branch of

√
𝑧1 on the 𝑧1 plane

slit along the negative part of the real axis. (In other words, choose the value of
√
𝑧1 to lie

in the right-hand half of the 𝑧1 plane.) Extend this function to be independent of 𝑧2 on 𝐺1.
Next consider on the 𝑧1 plane slit along the positive part of the real axis the branch of

√
𝑧1

for which the argument of 𝑧1 is chosen to lie between 0 and 2𝜋. (In other words, choose the
value of

√
𝑧1 to lie in the upper half of the 𝑧1 plane.) Extend this function to be independent

of 𝑧2 on 𝐺2. Observe that these two branches of
√
𝑧1 agree when Im 𝑧1 > 0. Extend this

common branch to be independent of 𝑧2 on 𝐺3. Since the indicated holomorphic functions
on 𝐺1 and 𝐺3 match on the intersection 𝐺1 ∩ 𝐺3, and the functions on 𝐺2 and 𝐺3 match on
𝐺2 ∩ 𝐺3, the construction provides a well-defined holomorphic function on 𝐺1 ∪ 𝐺2 ∪ 𝐺3.
When this holomorphic function is extended across boundary points where Re 𝑧1 < 0 and
Im 𝑧1 = 0 and |𝑧2| < 1 from the side where Im 𝑧1 > 0, the result is a branch of

√
𝑧1 taking

values in the second quadrant, hence equal to the negative of the original function. Thus the
extension is not two-sided.
Of course, the boundary of a general domain can be muchmore complicated than the one

in the preceding example. For instance, the boundary need not be locally connected (think
of a comb). So the notion of one-sided extension is too simple to cover the general situation.
One way to capture the full complexity without entering into the world of manifolds is the
following definition.
A holomorphic function 𝑓 on a domain 𝐺 is called completely singular at a boundary

point 𝑝 if for every connected open neighborhood𝑈 of 𝑝, there does not exist a holomorphic
function 𝐹 on 𝑈 that agrees with 𝑓 on some nonvoid open subset of 𝑈 ∩ 𝐺 (equivalently, on
some connected component of𝑈∩𝐺). A completely singular function20 is “holomorphically
non-extendable” in the strongest possible way.
A domain 𝐺 in ℂ𝑛 is called a domain of holomorphy if there exists some holomorphic

function on𝐺 that is completely singular at every boundary point of𝐺. This property appears
to be hard to verify in concrete cases. A presumably easier property to check is the existence
for each boundary point 𝑝 of a holomorphic function on 𝐺 that is completely singular at 𝑝
(possibly a different function for each choice of the boundary point 𝑝). A domain satisfying

20The terminology “completely singular” is not completely standard. Two books using this terminology are
Holomorphic Functions and Integral Representations in Several Complex Variables by R. Michael Range
(Springer, 1986); and From Holomorphic Functions to Complex Manifolds by Klaus Fritzsche and Hans
Grauert (Springer, 2002).
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this (apparently less restrictive) property is called21 a weak domain of holomorphy.
Example 13. Convex domains are weak domains of holomorphy. Indeed, at each boundary
point there is an affine complex linear function that is zero at the boundary point but nonzero
inside the domain. The reciprocal of the function is then holomorphic inside and completely
singular at the specified boundary point. Exhibiting a holomorphic function that is singular
at every boundary point of a convex domain presents a more difficult problem.

Proof of Theorem 13. All of the properties hold for elementary reasons when 𝐺 = ℂ𝑛, so
assume that the boundary of 𝐺 is not empty. Much of the proof is merely point-set topology.
Complex analysis enters through the representation of functions by power series.
Certain implications are easy. Evidently (2)⟹ (3), and (7)⟹ (6).
Some notation is useful to discuss properties (4) and (5). When 𝑧 is a point in 𝐺, let 𝑑(𝑧)

denote inf𝑤∈ℂ𝑛⧵𝐺 ‖𝑧−𝑤‖, the distance from 𝑧 to the boundary of𝐺. Similarly let 𝑑(𝑆) denote
the distance from a subset 𝑆 of 𝐺 to the boundary of 𝐺, namely, inf { 𝑑(𝑧) ∶ 𝑧 ∈ 𝑆 }. When
𝑣 is a unit vector in ℂ𝑛, and 𝑧 is a point of 𝐺, let 𝑑𝑣(𝑧) denote

sup{ 𝑟 ∈ ℝ ∶ 𝑧 + 𝜆𝑣 ∈ 𝐺 when 𝜆 ∈ ℂ and |𝜆| < 𝑟 }.

The quantity 𝑑𝑣(𝑧) (which could be infinite when 𝐺 is unbounded) represents the radius of
the “largest” one-dimensional complex disc with center 𝑧 and direction 𝑣 that fits inside 𝐺.
(The quotationmarks are present because the supremum is not attained.) When 𝑆 is a subset
of𝐺, let 𝑑𝑣(𝑆) denote inf { 𝑑𝑣(𝑧) ∶ 𝑧 ∈ 𝑆 }. This quantity represents the distance from 𝑆 to the
boundary of 𝐺 in the (complex) direction of the unit vector 𝑣. Evidently 𝑑(𝑧) = inf { 𝑑𝑣(𝑧) ∶
‖𝑣‖ = 1 }, so 𝑑(𝑆) = inf { 𝑑𝑣(𝑆) ∶ ‖𝑣‖ = 1 } for every set 𝑆. Therefore (4)⟹ (5).
Also elementary is the implication that (5)⟹ (1). For if property (5) holds, then𝐾𝒪(𝐺) is a

relatively closed subset of𝐺 that has positive distance from the boundary of𝐺. Consequently,
the set𝐾𝒪(𝐺) is closed as a subset ofℂ𝑛. Moreover, the holomorphically convex hull𝐾𝒪(𝐺) is a
subset of the ordinary convex hull of 𝐾, hence is a bounded subset of ℂ𝑛. Being both closed
and bounded, the set 𝐾𝒪(𝐺) is compact.
To show that (1) ⟹ (2), suppose that 𝐺 is holomorphically convex, and let {𝑝𝑗} be a

sequence of points of 𝐺 having no accumulation point inside 𝐺. The first goal is to construct
an increasing sequence {𝐾𝑗} of holomorphically convex compact sets that exhausts 𝐺 and a
sequence {𝑞𝑗} of distinct points of 𝐺 such that 𝑞𝑗 ∈ 𝐾𝑗+1 ⧵ 𝐾𝑗 for each 𝑗, and the point sets
{𝑝𝑗} and {𝑞𝑗} are identical. (The sequence {𝑞𝑗} is a reordering of the sequence {𝑝𝑗} after any
repeated points in the sequence {𝑝𝑗} are removed.)
Suppose for a moment that this construction has been accomplished. The definition of

holomorphic convexity guarantees (by a routine induction) the existence for each 𝑗 of a
holomorphic function 𝑓𝑗 on 𝐺 such that |𝑓𝑗(𝑧)| < 2−𝑗 when 𝑧 ∈ 𝐾𝑗, and |𝑓𝑗(𝑞𝑗)| > 𝑗 +
∑𝑗−1

𝑘=1 |𝑓𝑘(𝑞𝑗)|. The infinite series
∑∞

𝑗=1 𝑓𝑗 converges uniformly on each compact subset of 𝐺
to a holomorphic function 𝑓 such that |𝑓(𝑞𝑗)| > 𝑗 − 1 for each 𝑗. Thus lim𝑗→∞ |𝑓(𝑞𝑗)| = ∞,

21The notion of “weak domain of holomorphy” appears in the two books just cited.
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so lim𝑗→∞ |𝑓(𝑝𝑗)| = ∞ as well, since the two sequences are essentially the same except for
the order of terms.
The necessary construction can be accomplished as follows. For each positive integer 𝑚,

the set
{ 𝑧 ∈ 𝐺 ∶ ‖𝑧‖ ≤ 𝑚 and 𝑑(𝑧) ≥ 1∕𝑚 }

is a compact subset of 𝐺. Denote the holomorphically convex hull of this set by 𝐿𝑚, which
is again a compact subset of 𝐺 by hypothesis. Let 𝐾1 be the empty set. Let 𝑚1 be an index
for which the set 𝐿𝑚1

contains some points of the sequence {𝑝𝑗} (necessarily finitely many,
since the sequence has no accumulation point in 𝐺). Arrange these points in a list (ignoring
repetitions), say 𝑞1, . . . , 𝑞𝑘1 . For each 𝑗 between 1 and 𝑘1, let 𝐾𝑗+1 be the finite set {𝑞1,… , 𝑞𝑗}.
Choose an index𝑚2 larger than𝑚1 for which the set 𝐿𝑚2

⧵𝐿𝑚1
contains points of the sequence

{𝑝𝑗}. Label these points 𝑞𝑘1+1,… , 𝑞𝑘2 . For each 𝑗 between 𝑘1 + 1 and 𝑘2, let 𝐾𝑗+1 be the set
𝐿𝑚1

∪ {𝑞𝑘1+1,… , 𝑞𝑗} (which is holomorphically convex by Exercise 24). Continue recursively
to obtain the required sequences {𝐾𝑗} and {𝑞𝑗}. Thus (1)⟹ (2).
To prove that (3) ⟹ (1), let 𝐾 be an arbitrary compact subset of 𝐺. Every holomorphic

function on𝐺 is bounded on𝐾, hence on𝐾𝒪(𝐺). Consequently, property (3) implies that every
sequence in 𝐾𝒪(𝐺) must have an accumulation point in 𝐺. But 𝐾𝒪(𝐺) is relatively closed in 𝐺
by definition, so the accumulation point lies in 𝐾𝒪(𝐺). Thus 𝐾𝒪(𝐺) is sequentially compact.
The proof that (2)⟹ (7) is purely point-set topology. For each positive integer 𝑘, the set

{ 𝑧 ∈ 𝐺 ∶ 2−(𝑘+1) ≤ 𝑑(𝑧) ≤ 2−𝑘 and ‖𝑧‖ ≤ 2𝑘 }

is compact, so this set can be covered by a finite number of open balls of radius 2−(𝑘+2) with
centers in the set. Collect these centers for every 𝑘 and arrange them in a sequence {𝑝𝑗}.
Every compact subset of 𝐺 has positive distance from the boundary of 𝐺 and so contains
only finitely many points of this sequence. Thus the sequence has no accumulation point
inside 𝐺. On the other hand, the sequence evidently has every boundary point of 𝐺 as an
accumulation point. The claim is that even more is true: if𝑈 is an arbitrary connected open
set that intersects the boundary of 𝐺, and 𝑉 is a component of 𝑈 ∩ 𝐺, then the points of the
sequence {𝑝𝑗} that lie in 𝑉 accumulate at every boundary point of 𝑉 that is contained in 𝑈.
(There are boundary points of 𝑉 inside 𝑈, for in the contrary case, the open set 𝑉 would be
relatively closed in 𝑈, contradicting the connectedness of 𝑈. Boundary points of 𝑉 that are
inside 𝑈 are necessarily boundary points of 𝐺 as well.)
To verify the claim, let 𝑞 be a point of 𝑈 on the boundary of 𝑉. Choose 𝑁 so large that

𝑈 contains the ball centered at 𝑞 of radius 2−𝑁, and also ‖𝑞‖ < 2𝑁. Suppose𝑚 is an arbitrary
integer larger than 𝑁. Let 𝑞′ be a point in the intersection of 𝑉 and the ball of radius 2−𝑚
centered at 𝑞. There is an integer 𝑘 (at least as large as𝑚) for which

2−(𝑘+1) ≤ 𝑑(𝑞′) ≤ 2−𝑘.

By construction, some point of the sequence {𝑝𝑗} has distance from 𝑞′ less than 2−(𝑘+2). This
point lies in𝑉 because the open ball centered at 𝑞′ of radius 2−(𝑘+2) is entirely contained in𝑉
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(since this ball is contained in𝑈∩𝐺 and intersects𝑉, which is a component of𝑈∩𝐺). Thus
there is a subsequence of {𝑝𝑗} that lies in 𝑉 and converges to the arbitrary boundary point 𝑞.
Property (2) provides a holomorphic function that blows up along the sequence {𝑝𝑗}. This

function evidently is completely singular at every boundary point of 𝐺. Thus (2)⟹ (7).
Next consider the implication that (6) ⟹ (5). Evidently 𝑑

(
𝐾𝒪(𝐺)

)
≤ 𝑑(𝐾), since 𝐾 ⊆

𝐾𝒪(𝐺). Seeking a contradiction, suppose that 𝑑
(
𝐾𝒪(𝐺)

)
is strictly less than 𝑑(𝐾). Then there is

a point𝑤 in𝐾𝒪(𝐺) and a point𝑝 in the boundary of𝐺 such that ‖𝑤−𝑝‖ < 𝑑(𝐾). Consequently,
there is an 𝑛-tuple (𝑟1,… , 𝑟𝑛) of positive radii such that the open polydisc centered at 𝑤 with
polyradius 𝑟 equal to (𝑟1,… , 𝑟𝑛) contains the point 𝑝, yet for every point 𝑧 in 𝐾, the closed
polydisc centered at 𝑧 with polyradius 𝑟 is contained in 𝐺.
Under the hypothesis that 𝐺 is a weak domain of holomorphy, there is a holomorphic

function 𝑓 on 𝐺 that is completely singular at 𝑝. The union of the closed polydiscs with
polyradius 𝑟 centered at points of the compact set𝐾 is a compact subset of𝐺, so the function𝑓
is bounded on this set by some constant 𝑀. By Cauchy’s estimates for derivatives (these
inequalities follow from the iterated Cauchy integral on polydiscs),

|𝑓(𝛼)(𝑧)| ≤ 𝑀𝛼!
𝑟𝛼 for 𝑧 in 𝐾 and for every multi-index 𝛼.

Since𝑤 ∈ 𝐾𝒪(𝐺), the same inequalities hold with 𝑧 replaced by𝑤. Therefore the Taylor series
for 𝑓 centered at 𝑤 converges in the interior of the polydisc centered at 𝑤 with polyradius 𝑟
(by comparison with a product of convergent geometric series).
Thus 𝑓 fails to be completely singular at 𝑝. In view of this contradiction, the supposition

that 𝑑
(
𝐾𝒪(𝐺)

)
< 𝑑(𝐾) is untenable. Accordingly, (6)⟹ (5).

The proof that (3) ⟹ (4) is similar. Seeking a contradiction, suppose there is a unit
vector 𝑣 inℂ𝑛 and a point𝑤 in𝐾𝒪(𝐺) such that 𝑑𝑣(𝑤) < 𝑑𝑣(𝐾). Let 𝜆0 be a complex number of
absolute value equal to 𝑑𝑣(𝑤) such that𝑤+𝜆0𝑣 lies in the boundary of 𝐺. Apply property (3)
to produce a holomorphic function 𝑓 on 𝐺 that is unbounded on the sequence {𝑤+ 𝑗

𝑗+1
𝜆0𝑣}.

Then the function of one complex variable that sends 𝜆 to 𝑓(𝑤 + 𝜆𝑣) has a Maclaurin series
with radius of convergence equal to 𝑑𝑣(𝑤). The goal now is to obtain a contradiction by
showing that the radius of convergence actually is larger than 𝑑𝑣(𝑤).
Choose a number 𝑟 strictly between 𝑑𝑣(𝑤) and 𝑑𝑣(𝐾). The set of points

{ 𝑧 + 𝜆𝑣 ∶ 𝑧 ∈ 𝐾 and |𝜆| ≤ 𝑟 }

is a compact subset of𝐺, so the function𝑓 is bounded on this set, say by𝑀. Cauchy’s estimate
for derivatives implies that when 𝑧 ∈ 𝐾, the 𝑘th Maclaurin coefficient of the single-variable
function sending 𝜆 to 𝑓(𝑧+𝜆𝑣) is bounded by𝑀∕𝑟𝑘. By the chain rule, theMaclaurin coeffi-
cient is the value at 𝑧 of a linear combination of partial derivatives of 𝑓, hence is a holomor-
phic function on 𝐺. Since 𝑤 ∈ 𝐾, the corresponding Maclaurin coefficient of the function
that sends 𝜆 to 𝑓(𝑤 + 𝜆𝑣) admits the same bound𝑀∕𝑟𝑘. But 𝑘 is arbitrary, so 𝑓(𝑤 + 𝜆𝑣) is
a holomorphic function of 𝜆 at least in an open disk of radius 𝑟. This deduction contradicts
that the radius of convergence is equal to 𝑑𝑣(𝑤). Thus (3)⟹ (4).
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Putting together the above deductions shows that (1)⟹ (2)⟹ (7)⟹ (6)⟹ (5)⟹
(1), and also (1) ⟹ (2) ⟹ (3) ⟹ (4) ⟹ (5) ⟹ (1). Thus all seven statements are
equivalent.

After one singular function is known to exist, Baire’s magic wand can be applied to show
that most functions are singular. The next result is essentially a corollary of Theorem 13.

Theorem 14. The following properties of a domain 𝐺 in ℂ𝑛 are equivalent.

1. For every boundary point 𝑝, there exists a holomorphic function on 𝐺 that is completely
singular at 𝑝. (In other words, 𝐺 is a weak domain of holomorphy.)

2. For every boundary point 𝑝, most (in the sense of Baire category) holomorphic functions
on 𝐺 are completely singular at 𝑝.

3. There exists a holomorphic function on 𝐺 that is completely singular at every boundary
point of 𝐺. (In other words, 𝐺 is a domain of holomorphy.)

4. Most (in the sense of Baire category) holomorphic functions on 𝐺 are completely singular
at every boundary point.

As observed on page 23 in the proof of Theorem 4, the space of holomorphic functions on
a domain 𝐺 is a complete metric space. (Convergence with respect to the metric is the same
as uniform convergence on compact sets.) The word “most” in the statement of Theorem 14
means “a residual set, that is, the complement of a set of first Baire category.”

Proof of Theorem 14. Evidently (4)⟹ (3)⟹ (1) and (4)⟹ (2)⟹ (1). What remains to
show is that (1)⟹ (4). A particular consequence is that properties (1) and (3) are equivalent
(which was already demonstrated in the proof of Theorem 13).
Suppose, then, that property (1) holds. Let 𝑈 be a connected open set that intersects the

boundary of 𝐺, and let 𝑉 be a component of the intersection 𝐺 ∩ 𝑈. By hypothesis, there
exists a holomorphic function on 𝐺 that cannot be extended holomorphically from 𝑉 to 𝑈.
The first claim is that most holomorphic functions on 𝐺 do not extend holomorphically

from 𝑉 to 𝑈. The vector space of holomorphic functions on 𝐺 is not only a complete metric
space but also an 𝐹-space or Fréchet space (meaning that the vector space operations are
continuous, and themetric is invariant under translation). A standard notation for the space
of holomorphic functions on 𝐺 is 𝒪(𝐺). The subspace of 𝒪(𝐺) consisting of functions that
extend holomorphically from 𝑉 to 𝑈 can be viewed as a Fréchet space whose metric is the
sum of the metrics from𝒪(𝐺) and𝒪(𝑈); this subspace is embedded continuously into𝒪(𝐺).
By the hypothesis from the preceding paragraph, the image of the embedding is not thewhole
of𝒪(𝐺), so by a theorem from functional analysis, the image is of first Baire category.22 Thus
the functions in a residual set in 𝒪(𝐺) cannot be extended holomorphically from 𝑉 to 𝑈.
22The argument is the same as the one on page 26. The theorem from Banach’s book cited there applies, or

one could invoke the version of the open mapping theorem from Walter Rudin’s book Functional Analysis
(section 2.11, page 48 of the second edition): a continuous linear mapping between Fréchet spaces either is
a surjective open map or has image of first category.
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To strengthen the conclusion, choose a countable dense set of points in the boundary of𝐺.
For each point, choose a countable neighborhood basis of open balls centered at the point, say
the balls whose radii are reciprocals of positive integers. The intersection of each ball with 𝐺
has either a finite or a countably infinite number of connected components. Arrange the
collection of components from all balls and all points into a countable list {𝑉𝑗}∞𝑗=1. According
to what was just shown, the set of holomorphic functions on 𝐺 that extend holomorphically
from a particular 𝑉𝑗 to the corresponding ball is a set of first category in𝒪(𝐺). Therefore the
set of holomorphic functions on 𝐺 that extend from any 𝑉𝑗 whatsoever is a countable union
of sets of first category, hence still a set of first category. In other words, the complementary
set of holomorphic functions on 𝐺 that extend from no 𝑉𝑗 to the corresponding ball is a
residual set.
What remains to check is the plausible assertion that every member of this residual set

of holomorphic functions is completely singular at every boundary point. Indeed, if 𝑈 is
an arbitrary connected open set that intersects the boundary of 𝐺, and 𝑉 is a component
of 𝐺 ∩𝑈, then some ball in the constructed sequence simultaneously is contained in 𝑈 and
is centered at a boundary point of 𝑉. Some 𝑉𝑗 corresponding to this ball is a subset of 𝑉,
so all of the functions in the indicated residual set fail to extend holomorphically from 𝑉
to 𝑈. Thus every function in the residual set is completely singular at every boundary point
of 𝐺.

Exercise 25. For each of the following subsets of ℂ2, determine if the subset is a domain of
holomorphy.

(a) The complement of the point (0, 0).

(b) The complement of the real line { (𝑥, 0) ∈ ℂ2 ∶ 𝑥 ∈ ℝ }.

(c) The complement of the complex line { (𝑧, 0) ∈ ℂ2 ∶ 𝑧 ∈ ℂ }.

(d) The complement of the totally real 2-plane { (𝑥1, 𝑥2) ∈ ℂ2 ∶ 𝑥1 ∈ ℝ and 𝑥2 ∈ ℝ }.

(e) The complement of the complex half-line { (𝑥 + 𝑖𝑦, 0) ∶ 𝑥 ∈ ℝ and 𝑦 ≥ 0 }.

Exercise 26. (a) Is the union of two domains of holomorphy again a domain of holomorphy?

(b) Is (each connected component of) the intersection of two domains of holomorphy again
a domain of holomorphy?

(c) If 𝐺1 is a domain of holomorphy in ℂ𝑛1 , and 𝐺2 is a domain of holomorphy in ℂ𝑛2 , is the
Cartesian product 𝐺1 × 𝐺2 a domain of holomorphy in 𝐶𝑛1+𝑛2 ?

(d) Show that holomorphic convexity is a biholomorphically invariant property. In other
words, if𝑓∶ 𝐺1 → 𝐺2 is a bijective holomorphicmap, then𝐺1 is a domain of holomorphy
if and only if 𝐺2 is a domain of holomorphy.
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(e) Suppose𝐺 is a domain of holomorphy inℂ𝑛, and 𝑓∶ 𝐺 → ℂ𝑛 is a holomorphic map (not
necessarily either injective or surjective). If the image 𝑓(𝐺) is an open set in ℂ𝑛, must
the image be a domain of holomorphy?

(f) Suppose 𝐺 is a domain of holomorphy in ℂ𝑛, and 𝑓∶ 𝐺 → ℂ𝑘 is a holomorphic map
(not necessarily either injective or surjective). Show that if𝐷 is a domain of holomorphy
in ℂ𝑘, then (each connected component of) the inverse image 𝑓−1(𝐷) is a domain of
holomorphy in ℂ𝑛.

(g) Show that if 𝑓1, . . . , 𝑓𝑘 are holomorphic functions defined on a holomorphically convex
domain 𝐺, then each connected component of { 𝑧 ∈ 𝐺 ∶

∑𝑘
𝑗=1 |𝑓𝑗(𝑧)| < 1 } is a domain

of holomorphy.

3.2.4 Pseudoconvexity
Pseudoconvexity means convexity with respect to a certain class of real-valued functions
that Kiyoshi Oka23 called “pseudoconvex functions.” Pierre Lelong24 called these functions
“plurisubharmonic functions,” and this terminology is the one that has become standard.
The discussion had better start with the base case of dimension 1.

Subharmonic functions

A function 𝑢 that is defined on an open subset of the complex planeℂ and that takes values in
[−∞,∞) is called subharmonic if firstly 𝑢 is upper semicontinuous, and secondly 𝑢 satisfies
one of the following equivalent properties.

1. For every point 𝑎 in the domain of 𝑢, there is a radius 𝑟(𝑎) such that 𝑢 satisfies the
sub-mean-value property on every disc of radius 𝜌 less than 𝑟(𝑎):

𝑢(𝑎) ≤ 1
2𝜋 ∫

2𝜋

0
𝑢(𝑎 + 𝜌𝑒𝑖𝜃)𝑑𝜃.

2. The function 𝑢 satisfies the sub-mean-value property on every closed disc contained
in the domain of 𝑢.

3. For every closed disc 𝐷 contained in the domain of 𝑢 and every function ℎ that is har-
monic on a neighborhood of 𝐷, if 𝑢 ≤ ℎ on the boundary of 𝐷, then 𝑢 ≤ ℎ on all
of 𝐷.

23Kiyoshi Oka, Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes, Tôhoku
Mathematical Journal 49 (1942) 15–52. See section 11 of the paper.

24Pierre Lelong, Définition des fonctions plurisousharmoniques, Comptes rendus hebdomadaires des séances
de l’Académie des sciences 215 (1942) 398–400; Sur les suites de fonctions plurisousharmoniques, Comptes
rendus hebdomadaires des séances de l’Académie des sciences 215 (1942) 454–456.
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4. For every compact set 𝐾 contained in the domain of 𝑢 and for every function ℎ that is
harmonic on a neighborhood of 𝐾, if 𝑢 ≤ ℎ on the boundary of 𝐾, then 𝑢 ≤ ℎ on all
of 𝐾.

5. If ∆ denotes the Laplace operator 𝑑2

𝑑𝑥2
+ 𝑑2

𝑑𝑦2
, then ∆𝑢 ≥ 0. (If 𝑢 does not have second

derivatives in the classical sense, then ∆𝑢 is understood in the sense of distributions.)

That these properties are equivalent is shown in textbooks on the theory of functions of
one complex variable. Some authors disallow subharmonic functions to be constantly equal
to −∞ on a component of the domain of the function.
A fundamental example of a subharmonic function is |𝑓| when 𝑓 is holomorphic. Since

a holomorphic function has the mean-value property, the absolute value of the function has
the sub-mean-value property because the absolute value of an integral does not exceed the
integral of the absolute value.
Another elementary example of a subharmonic function in ℂ is log |𝑧|. This function

is even harmonic when 𝑧 ≠ 0, so the mean-value property holds on small discs centered
at nonzero points; and the sub-mean-value property holds automatically at 0, because the
function takes the value −∞ at 0. Since the class of harmonic functions is preserved under
composition with a holomorphic function, property 4 implies that the class of subharmonic
functions is preserved too. In particular, log |𝑓| is subharmonic when 𝑓 is holomorphic.
The following two useful lemmas about subharmonic functions can be proved from first

principles.
Lemma 5. If 𝑢 is subharmonic, then the integral of 𝑢 on a circle is a (weakly) increasing
function of the radius. In other words,

∫
2𝜋

0
𝑢(𝑎 + 𝑟1𝑒𝑖𝜃)𝑑𝜃 ≤ ∫

2𝜋

0
𝑢(𝑎 + 𝑟2𝑒𝑖𝜃)𝑑𝜃 when 0 < 𝑟1 ≤ 𝑟2.

Lemma 6. A subharmonic function defined on a connected open subset ofℂ is either locally
integrable or identically equal to −∞.

Proof of Lemma 5. Since 𝑢 is upper semicontinuous, there is for each positive 𝜀 a continuous
function ℎ on the circle of radius 𝑟2 such that 𝑢 < ℎ < 𝑢 + 𝜀 on this circle. By solving a
Dirichlet problem, one may assume that ℎ is harmonic inside the disc of radius 𝑟2, or, after
slightly dilating the coordinates, in a neighborhood of the closed disc. Then 𝑢 < ℎ on the
circle of radius 𝑟1, since 𝑢 is subharmonic, so ∫

2𝜋
0 𝑢(𝑎 + 𝑟1𝑒𝑖𝜃)𝑑𝜃 < ∫ 2𝜋

0 ℎ(𝑎 + 𝑟1𝑒𝑖𝜃)𝑑𝜃 =
2𝜋ℎ(𝑎) = ∫ 2𝜋

0 ℎ(𝑎+ 𝑟2𝑒𝑖𝜃)𝑑𝜃 < 2𝜋𝜀+ ∫ 2𝜋
0 𝑢(𝑎+ 𝑟2𝑒𝑖𝜃)𝑑𝜃. Let 𝜀 go to 0 to obtain the required

inequality.

Proof of Lemma 6. An upper semicontinuous function is locally bounded above, so what
needs to be proved is that the integral of a subharmonic function 𝑢 on a disc is not equal
to −∞ unless the function is identically equal to −∞.
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Suppose 𝑎 is a point at which 𝑢(𝑎) ≠ −∞. The sub-mean-value property implies that

1
2𝜋 ∫

2𝜋

0
𝑢(𝑎 + 𝑟𝑒𝑖𝜃)𝑑𝜃 ≥ 𝑢(𝑎)

when the closed disc centered at 𝑎 of radius 𝑟 is contained in the domain of 𝑢. Multiplying
by 𝑟 and integrating with respect to 𝑟 shows that |𝐷|−1 ∫𝐷 𝑢 ≥ 𝑢(𝑎) for every disc 𝐷 centered
at 𝑎 (where |𝐷| denotes the area of 𝐷). Hence 𝑢 is locally integrable in a neighborhood of
every point of the disc 𝐷.
On the other hand, if 𝑏 is a point such that 𝑢(𝑏) = −∞, but 𝑢 is not identically equal to−∞

in a neighborhood of 𝑏, then there is a point 𝑎 closer to 𝑏 than to the boundary of the domain
of definition of 𝑢 and with the property that 𝑢(𝑎) ≠ −∞. By the previous observation, the
function 𝑢 is integrable in a neighborhood of 𝑏.
The preceding two paragraphs show that the set of points such that 𝑢 is integrable in a

neighborhood of the point is both open and relatively closed. Therefore the function 𝑢, if
not identically equal to −∞, is locally integrable in a neighborhood of every point of the
domain.

Exercise 27. (a) The sum of two subharmonic functions is subharmonic.

(b) If 𝑢 is subharmonic and 𝑐 is a positive constant, then 𝑐𝑢 is subharmonic.

(c) If 𝑢1 and 𝑢2 are subharmonic, then so is the pointwise maximum of 𝑢1 and 𝑢2.

(d) If 𝜑 is an increasing convex function on the range of a subharmonic function 𝑢, then the
composite function 𝜑◦𝑢 is subharmonic. [A useful special case is 𝜑(|𝑧|).]

Some care is needed in handling infinite processes involving subharmonic functions. Easy
examples show that two things could go wrong when taking the pointwise supremum of
an infinite family of subharmonic functions. If 𝑓𝑘(𝑧) is the constant function 𝑘, then the
sequence {𝑓𝑘} of subharmonic functions has limit +∞, which is not an allowed value for an
upper semicontinuous function. If 𝑓𝑘(𝑧) =

1

𝑘
log |𝑧|, then the sequence {𝑓𝑘} of subharmonic

functions on the unit disc has pointwise supremum equal to 0 when 𝑧 ≠ 0 and equal to −∞
when 𝑧 = 0; this limit function is not upper semicontinuous. The following exercise says
that these two kinds of difficulties are the only obstructions to subharmonicity of a pointwise
supremum.
Exercise 28. If 𝑢𝛼 is a subharmonic function for each 𝛼 in some index set 𝐴 (possibly an
uncountable set), and the pointwise supremum sup𝛼∈𝐴 𝑢𝛼 is ameasurable function, then this
pointwise supremum satisfies the sub-mean-value property. Consequently, the pointwise
supremum is subharmonic if it is upper semicontinuous (which entails, in particular, that
the supremum is nowhere equal to +∞).
Taking a pointwise supremum of subharmonic functions is a process used in Perron’s

method for solving the Dirichlet problem in a planar domain.

62



3 Convexity

Taking the maximum of two subharmonic functions always produces another one, but
taking the minimum does not. For instance, min(1, |𝑧|) does not have the sub-mean-value
property at the point where 𝑧 = 1. Nonetheless, monotonically decreasing sequences of
subharmonic functions have subharmonic limits.

Theorem 15. The pointwise limit of a decreasing sequence of subharmonic functions is again
subharmonic. Moreover, every subharmonic function on an open set is, on each compact subset,
the limit of a decreasing sequence of infinitely differentiable subharmonic functions.

Proof. Observe that the limit 𝑢 of a decreasing sequence {𝑢𝑘}∞𝑘=1 of upper semicontinuous
functions is still upper semicontinuous, because { 𝑧 ∶ 𝑢(𝑧) < 𝑎 } =

⋃∞
𝑘=1{ 𝑧 ∶ 𝑢𝑘(𝑧) < 𝑎 },

and the union of open sets is open. Now if 𝐾 is a compact subset of the domain of definition
of the functions, and ℎ is a harmonic function on 𝐾 such that 𝑢 ≤ ℎ on the boundary of 𝐾,
then certainly 𝑢 < ℎ + 𝜀 on the boundary of 𝐾 for every positive 𝜀. If 𝑧 is a point of 𝑏𝐾,
then 𝑢𝑘(𝑧) < ℎ(𝑧) + 𝜀 for all sufficiently large 𝑘. The upper semicontinuity of 𝑢𝑘 implies
that 𝑢𝑘(𝑤) ≤ ℎ(𝑤) + 2𝜀 for every 𝑤 in a neighborhood of 𝑧. Since 𝑏𝐾 is compact, and the
sequence of functions is decreasing, there is some 𝑘 such that 𝑢𝑘 ≤ ℎ + 2𝜀 on all of 𝑏𝐾. The
subharmonicity of 𝑢𝑘 then implies that 𝑢𝑘 ≤ ℎ + 2𝜀 on all of 𝐾. Therefore 𝑢 ≤ ℎ + 2𝜀 on 𝐾,
and letting 𝜀 go to 0 shows that 𝑢 ≤ ℎ on 𝐾. Hence the limit function 𝑢 is subharmonic.
To prove the second part of the theorem, let 𝑢 be a subharmonic function on a domain 𝐺

inℂ, and extend 𝑢 to be identically equal to 0 outside 𝐺. Let 𝜑 be an infinitely differentiable,
nonnegative function, with integral 1, supported in the unit ball, and depending only on the
radius; and let 𝜑𝜀(𝑥) denote 𝜀−2𝜑(𝑥∕𝜀). Let 𝑢𝜀 denote the convolution of 𝑢 and 𝜑𝜀: namely,
𝑢𝜀(𝑧) = ∫ℂ 𝜑𝜀(𝑧 − 𝑤)𝑢(𝑤)𝑑𝐴𝑤 = ∫ℂ 𝑢(𝑧 − 𝑤)𝜑𝜀(𝑤)𝑑𝐴𝑤, where 𝑑𝐴 denotes Lebesgue area
measure in the plane. Thus the value of 𝑢𝜀 at a point is a weighted average of the values of 𝑢
in an 𝜀-neighborhood of the point.
The sub-mean-value property of subharmonic functions implies that 𝑢(𝑧) ≤ 𝑢𝜀(𝑧) at every

point 𝑧 whose distance from the boundary of 𝐺 is at least 𝜀. Moreover, Lemma 5 implies
that on a compact subset of 𝐺, the functions 𝑢𝜀 decrease when 𝜀 decreases, once 𝜀 is smaller
than the distance from the compact set to 𝑏𝐺. Since 𝑢 is upper semicontinuous, the average
of 𝑢 over a sufficiently small disc is arbitrarily little more than the value of 𝑢 at the center of
the disc; the decreasing limit of 𝑢𝜀(𝑧) is therefore equal to 𝑢(𝑧). The first expression for the
convolution shows that the functions 𝑢𝜀 are infinitely differentiable, for one can differentiate
under the integral sign, letting the derivatives act on 𝜑𝜀. That 𝑢𝜀 is subharmonic follows by
integrating 𝑢𝜀 on a circle, interchanging the order of integration, and invoking the subhar-
monicity of 𝑢.

Here are two interesting examples that follow from the preceding considerations.
Example 14. Let {𝑎𝑘}∞𝑘=1 be a bounded sequence of distinct points of ℂ, and define 𝑢(𝑧) to be∑∞

𝑘=1 2
−𝑘 log |𝑧− 𝑎𝑘|. Then 𝑢 is a subharmonic function on the whole plane. Notice that the

sequence {𝑎𝑘} could be dense in some compact set. For instance, the sequence could be the
set of points in the unit square having rational coordinates.
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To see why 𝑢 is subharmonic, first suppose that 𝑧0 is neither a point of the sequence nor a
limit point of the sequence. Then the function log |𝑧−𝑎𝑘| is bounded above and below for 𝑧
in a neighborhood of 𝑧0, independently of 𝑘, so the series defining 𝑢(𝑧) converges uniformly
in the neighborhood. The limit of a uniformly convergent series of harmonic functions is
harmonic, so 𝑢 is harmonic on the complement of the closure of the sequence {𝑎𝑘}.
Now suppose that 𝑧0 is a point in the closure of the sequence {𝑎𝑘}. Split the sum defining

𝑢(𝑧) into two parts: the sum of the terms for which |𝑎𝑘 − 𝑧0| < 1∕2 and the sum of the terms
for which |𝑎𝑘 − 𝑧0| ≥ 1∕2. The second sum converges uniformly for 𝑧 in a neighborhood
of 𝑧0 (as in the preceding paragraph) and represents a harmonic function there. The first
sum is a sum of negative terms (for 𝑧 in a neighborhood of 𝑧0), so the partial sums form a
decreasing sequence of subharmonic functions. By Theorem 15, the partial sums converge
to a subharmonic function.
Thus 𝑢 is subharmonic in the whole plane ℂ, and 𝑢 takes the value −∞ at every point of

the sequence {𝑎𝑘}. The set where 𝑢 equals −∞ necessarily is a set of measure zero, since the
subharmonic function 𝑢 is locally integrable by Lemma 6.
Example 15. Let 𝐺 be a proper subdomain of the complex plane. If 𝑑(𝑧) denotes the distance
from the point 𝑧 to the boundary of 𝐺, then − log 𝑑(𝑧) is a subharmonic function of 𝑧 in 𝐺.
Indeed, if 𝑎 is a point of 𝑏𝐺 (the boundary of 𝐺), then − log |𝑧 − 𝑎| is a harmonic function
on 𝐺. Since

sup{− log |𝑧 − 𝑎| ∶ 𝑎 ∈ 𝑏𝐺 } = − inf { log |𝑧 − 𝑎| ∶ 𝑎 ∈ 𝑏𝐺 } = − log 𝑑(𝑧),

the subharmonicity follows from Exercise 28.

Plurisubharmonic functions

Introduction An upper semicontinuous function defined on an open subset ofℂ𝑛 is called
a plurisubharmonic function if the restriction to every complex line is subharmonic. Both the
name and the fundamental properties of plurisubharmonic functions are due to Lelong.25
A domain in ℂ𝑛 that is convex with respect to the class of plurisubharmonic functions is

called a pseudoconvex domain. It will be shown later that Example 15 generalizes to higher
dimension: a proper subdomain of ℂ𝑛 is pseudoconvex if and only if the function − log 𝑑(𝑧)
is plurisubharmonic in the domain.
If 𝑓 is holomorphic, then |𝑓| is plurisubharmonic. Consequently, the hull of a compact set

with respect to the class of plurisubharmonic functions is no larger than the holomorphically
convex hull. Therefore every holomorphically convex domain is pseudoconvex. The famous
Levi problem, to be solved later, is to prove the converse: every pseudoconvex domain is a
domain of holomorphy.

25The following seminal article develops the basic theory: Pierre Lelong, Les fonctions plurisousharmoniques,
Annales scientifiques de l’École Normale Supérieure, Sér. 3, 62 (1945) 301–338.
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Equivalent definitions Suppose that𝑢 is an upper semicontinuous function on a domain𝐺
inℂ𝑛. Each of the following properties is equivalent to 𝑢 being a plurisubharmonic function
on 𝐺.

1. For every point 𝑧 in 𝐺 and every nonzero vector 𝑤 in ℂ𝑛, the function 𝜆 ↦ 𝑢(𝑧 + 𝜆𝑤)
is a subharmonic function of 𝜆 in the open subset of ℂ where this function is defined.
(This statement formalizes the meaning of 𝑢 being subharmonic on every complex
line.)

2. For every holomorphic mapping 𝑓 from the unit disc into 𝐺, the composite function
𝑢◦𝑓 is subharmonic on the unit disc. (In other words, the restriction of 𝑢 to every
“analytic disc” is subharmonic.)

3. In the special case that 𝑢 is twice continuously differentiable,

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝑢
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 ≥ 0 for every vector 𝑤 in ℂ𝑛.

The standard notation 𝜕∕𝜕𝑧𝑗 means
1

2
(𝜕∕𝜕𝑥𝑗 − 𝑖𝜕∕𝜕𝑦𝑗) in terms of the underlying real

coordinates for which 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗. Similarly, 𝜕∕𝜕𝑧𝑗 means
1

2
(𝜕∕𝜕𝑥𝑗 + 𝑖𝜕∕𝜕𝑦𝑗). The

Austrian mathematician Wilhelm Wirtinger (1865–1945) introduced this notation for
complex partial derivatives.26

If 𝑢 is not twice differentiable, then one can interpret the preceding inequality in the
sense of distributions. Alternatively, one can say that 𝑢 is the limit of a decreasing
sequence of infinitely differentiable functions satisfying the inequality.

4. For every closed polydisc of arbitrary orientation contained in 𝐺, the value of 𝑢 at the
center of the polydisc is at most the average of 𝑢 on the torus in the boundary of the
polydisc. It is equivalent to say that each point of 𝐺 has a neighborhood such that the
indicated property holds for polydiscs contained in the neighborhood.

The last property needs some explanation. A polydisc is a product of one-dimensional
discs. One part of the boundary of the polydisc is the Cartesian product of the boundaries
of the one-dimensional discs. This Cartesian product of circles is a multidimensional torus.
There is no standard designation for this torus, which different authors call by various names,
including “spine,” “skeleton,” and “distinguished boundary.” Lelong uses the French word
“arête,” which means “edge” in mathematical contexts and more generally can refer to a
mountain ridge, the bridge of a nose, and a fishbone. The words “arbitrary orientation”
mean that the polydisc need not have its sides parallel to the coordinate axes: the polydisc
could be rotated by a unitary transformation.
26W. Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Mathematische

Annalen 97 (1927) 357–376.
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It is useful to look at some examples of plurisubharmonic functions before proving the
equivalence of the various properties. If 𝑓 is a holomorphic function, then both |𝑓| and
log |𝑓| are plurisubharmonic, because the restriction of a holomorphic function to a complex
line is holomorphic as a function of one variable. Notice that log|𝑧1| is identically equal
to −∞ on the complex line where 𝑧1 = 0, so the indicated definition of plurisubharmonic
function works only if one allows subharmonic functions in the plane to be identically equal
to −∞.
Less obvious examples are the functions log(|𝑧1|2 + |𝑧2|2) and log(1 + |𝑧1|2 + |𝑧2|2). The

plurisubharmonicity can be verified by computing second derivatives and checking that the
complex Hessian matrix is nonnegative, but an alternative approach handles the higher-
dimensional analogue with no extra work. Observe that |𝑧1|2 + |𝑧2|2 = sup{ |𝑧1𝑤1 + 𝑧2𝑤2| ∶
|𝑤1|2+ |𝑤2|2 = 1 }. For fixed values of𝑤1 and𝑤2, the function 𝑧1𝑤1+ 𝑧2𝑤2 is a holomorphic
function of 𝑧1 and 𝑧2, so log |𝑧1𝑤1+𝑧2𝑤2| is plurisubharmonic. The pointwise supremumof a
family of plurisubharmonic functions, if upper semicontinuous, is plurisubharmonic (just as
in the one-dimensional case), so log(|𝑧1|2 + |𝑧2|2) is plurisubharmonic. The same argument
shows that log(|𝑧1|2+ |𝑧2|2+ |𝑧3|2) is a plurisubharmonic function inℂ3, and fixing 𝑧3 equal
to 1 shows that log(1 + |𝑧1|2 + |𝑧2|2) is a plurisubharmonic function in ℂ2.
Exercise 29. Show that log(|𝑧1|+ |𝑧2|) and log(1+ |𝑧1|+ |𝑧2|) are plurisubharmonic functions
in ℂ2.
The function max(|𝑧1|, |𝑧2|) is plurisubharmonic in ℂ2 because the pointwise maximum

of two (pluri)subharmonic functions is again (pluri)subharmonic. Accordingly, the bidisc
in ℂ2, whose definition as a polynomial polyhedron requires two functions, can be defined
as a sub-level set of one plurisubharmonic function. Moreover, every polynomial polyhedron
can be defined by a single plurisubharmonic function. This example shows that compared
to holomorphic functions, plurisubharmonic functions have an advantageous flexibility.
Exercise 30. There is no identity principle for plurisubharmonic functions: Give an example
of an everywhere defined plurisubharmonic function, not identically equal to zero, that is
nonetheless identically equal to zero on a nonvoid open set.

The example (log|𝑧1|)(log
1

|𝑧2|
) on the open set where 𝑧1𝑧2 ≠ 0 shows that a function can be

subharmonic in each variable separately without being plurisubharmonic. On this open set,
the function is evenharmonic in each variable separately, but the determinant of the complex
Hessian is negative (as a routine calculation shows), so the function is not plurisubharmonic.
A routine calculation shows too that the restriction of the function to a complex line onwhich
𝑧1 = 𝑐𝑧2 (where 𝑐 is an arbitrary nonzero complex number) has negative Laplacian, which is
anotherway to see that the function is not plurisubharmonic. A function that is subharmonic
in each variable separately does have the sub-mean-value property on polydiscs with faces
parallel to the coordinate axes, which explains why property (4) needs to allow polydiscs of
arbitrary orientation.
Exercise 31. Show that the product function (log|𝑧1|)(log|𝑧2|) is not plurisubharmonic in any
neighborhood of a point where 𝑧1𝑧2 ≠ 0.
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It is tempting to try to extend the list of equivalent properties for plurisubharmonicity in
parallel with the analogous properties for subharmonicity. One might define a function to
be “subpluriharmonic” [a nonstandard term] if whenever the function is bounded above on
the boundary of a compact set by a pluriharmonic function, the bound propagates to the
whole set. (The standard term “pluriharmonic” means that the restriction of the function
to each complex line is harmonic. Equivalently, a function is pluriharmonic if locally the
function equals the real part of a holomorphic function.) A plurisubharmonic function is
subpluriharmonic, but the converse is false. Indeed, every plurisubharmonic function onℂ𝑛

is subharmonic as a function on ℝ2𝑛, every pluriharmonic function is harmonic, and every
subharmonic function is subpluriharmonic. But the function |𝑧1|2 − |𝑧2|2 is harmonic as a
function on ℝ4, hence subpluriharmonic, but not plurisubharmonic.

Proof of the equivalence of definitions of plurisubharmonicity. Suppose that the function 𝑢 is
twice continuously differentiable. Then saying that 𝑢(𝑧 + 𝜆𝑤) is subharmonic as a function
of 𝜆 in ℂ is the same as saying that the Laplacian is nonnegative. The chain rule implies
that this Laplacian equals 4

∑𝑛
𝑗=1

∑𝑛
𝑘=1 𝑢𝑗𝑘𝑤𝑗𝑤𝑘, where 𝑢𝑗𝑘 means 𝜕

2𝑢∕𝜕𝑧𝑗𝜕𝑧𝑘. Therefore
property (1) implies property (3).
To see that property (3) implies (2), observe that the composite function𝑢◦𝑓 of one variable

is subharmonic precisely when the Laplacian is nonnegative. The chain rule implies that
when 𝑓 is a holomorphic mapping, the Laplacian of 𝑢◦𝑓 equals 4

∑𝑛
𝑗=1

∑𝑛
𝑘=1 𝑢𝑗𝑘𝑓𝑗𝑓𝑘.

Evidently property (2) implies property (1). Accordingly, properties (1), (2), and (3) are all
equivalent when 𝑢 is sufficiently smooth.
When 𝑢 is not smooth, property (2) still implies property (1), which is the special case

of a holomorphic mapping that is a first-degree polynomial. To prove the converse, take a
decreasing sequence of smooth plurisubharmonic functions converging to𝑢 (by convolving𝑢
with smooth mollifying functions, just as in one variable). For the smooth approximants,
property (2) holds by the first part of the proof, and this property evidently continues to hold
in the limit.
It remains to show that property (1) is equivalent to property (4). Property (1) is invariant

under composition with a complex-linear transformation (since such transformations take
complex lines to complex lines), so it suffices to show that (1) ⟹ (4) for polydiscs with
faces parallel to the coordinate axes. Integrate on the torus by integrating over each circle
separately. Applying (1) for each integral shows that (4) holds. Conversely, suppose (4) holds.
Since upper semicontinuous functions are bounded above on compact sets, subtracting a
constant from 𝑢 reduces to the case that 𝑢 is negative. Integrate on a polydisc and let 𝑛 − 1
of the radii tend to 0. Apply Fatou’s lemma to deduce that the restriction of 𝑢 to a disc in a
complex line satisfies the sub-mean-value property. Thus (1) holds.

Pseudoconvexity can be characterized by convexity with respect to the plurisubharmonic
functions but alternatively by a certain geometric property. Ordinary convexity says that if
the boundary of a line segment lies in the domain, then the whole line segment lies in the
domain. A natural way to generalize this notion to multidimensional complex analysis is
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to ask for an analytic disc to lie in the domain whenever the boundary of the disc lies in
the domain. An analytic discmeans a continuous mapping from the closed unit disc 𝐷 in ℂ
intoℂ𝑛 that is holomorphic on the interior of the disc. Often an analytic disc is identifiedwith
the image (at least when the mapping is one-to-one). Here are two versions of the so-called
continuity principle for analytic discs, also known by the German name, Kontinuitätssatz.
The principle may or may not hold for a particular domain 𝐺 in ℂ𝑛.

(a) If for each 𝛼 in some index set 𝐴, the mapping 𝑓𝛼 ∶ 𝐷 → 𝐺 is an analytic disc whose
image is contained in the domain 𝐺, and if there is a compact subset of 𝐺 that contains⋃

𝛼∈𝐴 𝑓𝛼(𝑏𝐷) (the “boundaries” of the analytic discs), then there is a compact subset of𝐺
that contains

⋃
𝛼∈𝐴 𝑓𝛼(𝐷).

(b) If 𝑓𝑡 ∶ 𝐷 → ℂ𝑛 is a family of analytic discs varying continuously with respect to the
parameter 𝑡 in the interval [0, 1], if

⋃
0≤𝑡≤1 𝑓𝑡(𝑏𝐷) is contained in the domain 𝐺 (hence

automatically contained in a compact subset of 𝐺), and if 𝑓0(𝐷) is contained in 𝐺, then⋃
0≤𝑡≤1 𝑓𝑡(𝐷) is contained in 𝐺 (hence in a compact subset of 𝐺).

The following theorem gives four equivalent ways to characterize pseudoconvex domains.
A sufficiently smooth function is called strictly (or strongly) plurisubharmonic if the complex
Hessian matrix is positive definite (rather than positive semi-definite). A function 𝑢∶ 𝐺 →
[−∞,∞) is an exhaustion function for 𝐺 if for every real number 𝑎, the set 𝑢−1[−∞, 𝑎) is
contained in a compact subset of 𝐺. The intuitive meaning of an exhaustion function is that
the function blows up at the boundary of 𝐺 (and also at infinity, if 𝐺 is unbounded).

Theorem 16. The following properties of a domain 𝐺 in ℂ𝑛 are equivalent.

1. There exists an infinitely differentiable, strictly plurisubharmonic exhaustion function
for 𝐺.

2. The domain 𝐺 is convex with respect to the plurisubharmonic functions (that is, 𝐺 is a
pseudoconvex domain).

3. The continuity principle (Kontinuitätssatz) holds for 𝐺.

4. The function − log 𝑑(𝑧) is plurisubharmonic, where 𝑑(𝑧) denotes the distance from 𝑧 to
the boundary of 𝐺.

Exercise 32. The unit ball { 𝑧 ∈ ℂ𝑛 ∶ ‖𝑧‖ < 1 } (where ‖𝑧‖2 = |𝑧1|2 +⋯ + |𝑧𝑛|2) is convex,
hence convex with respect to the holomorphic functions, hence convex with respect to the
plurisubharmonic functions. The distance from 𝑧 to the boundary equals 1−‖𝑧‖. Verify that
− log(1 − ‖𝑧‖) is plurisubharmonic and that − log(1 − ‖𝑧‖2) is an infinitely differentiable,
plurisubharmonic exhaustion function.
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Proof of Theorem 16. The plan of the proof is (1)⟹ (2)⟹ (3)⟹ (4)⟹ (1).
Suppose (1) holds: let𝑢 be a plurisubharmonic exhaustion function for𝐺. If𝐾 is a compact

subset of 𝐺, then 𝑢 is bounded above on 𝐾 by some constant𝑀. The plurisubharmonic hull
of 𝐾 is contained in { 𝑧 ∈ 𝐺 ∶ 𝑢(𝑧) ≤ 𝑀 } by the definition of the hull. This set is contained
in a compact subset of 𝐺 by the definition of exhaustion function. Being a relatively closed
subset of 𝐺 that is contained in a compact subset of 𝐺, the plurisubharmonic hull of 𝐾 is
compact. Thus (1)⟹ (2).
Suppose (2) holds. If 𝑓∶ 𝐷 → 𝐺 is an analytic disc, and 𝑢 is a plurisubharmonic function

on 𝐺, then 𝑢◦𝑓 is a subharmonic function on the unit disc, and the maximum principle for
subharmonic functions implies that 𝑢(𝑓(𝜆)) ≤ max{𝑢(𝑓(𝑒𝑖𝜃)) ∶ 0 ≤ 𝜃 ≤ 2𝜋 } for every
point 𝜆 in 𝐷. In other words, 𝑓(𝐷) is contained in the plurisubharmonic hull of 𝑓(𝑏𝐷).
Hence version (a) of the continuity principle holds: the plurisubharmonic hull of a compact
set containing

⋃
𝛼∈𝐴 𝑓𝛼(𝑏𝐷) is a compact set containing

⋃
𝛼∈𝐴 𝑓𝛼(𝐷). To get version (b) of the

continuity principle, consider the set 𝑆 of points 𝑡 in the interval [0, 1] for which 𝑓𝑡(𝐷) ⊂ 𝐺.
This set is nonvoid, since 𝑆 contains 0 by hypothesis. If 𝑡 ∈ 𝑆, then 𝑓𝑡(𝐷) is a compact subset
of 𝐺 (since 𝑓𝑡 is continuous on the closed disc 𝐷), so 𝑓𝑠(𝐷) ⊂ 𝐺 for 𝑠 near 𝑡 (since the discs
vary continuously with respect to the parameter). Thus 𝑆 is an open set. Version (a) of the
continuity principle implies that the set 𝑆 is closed. Hence 𝑆 is all of [0, 1], which is what
needed to be shown. Consequently, (2) implies (3).
Suppose that (3) holds. To see that − log 𝑑(𝑧) is plurisubharmonic, fix a point 𝑧0 in 𝐺 and

a vector 𝑤0 in ℂ𝑛 such that the closed disc { 𝑧0 + 𝜆𝑤0 ∶ |𝜆| ≤ 1 } lies in 𝐺. To show that
− log 𝑑(𝑧0 + 𝜆𝑤0) is subharmonic as a function of 𝜆, it suffices to fix a polynomial 𝑝 of one
complex variable such that

− log 𝑑(𝑧0 + 𝜆𝑤0) ≤ Re𝑝(𝜆) when |𝜆| = 1

and to show that the same inequality holds when |𝜆| < 1. This problem translates directly
into the equivalent problem of showing that if

𝑑(𝑧0 + 𝜆𝑤0) ≥ |𝑒−𝑝(𝜆)| when |𝜆| = 1,

then the same inequality holds when |𝜆| < 1. A further reformulation is to show that if, for
every point 𝜁 in the open unit ball of ℂ𝑛, the point 𝑧0 + 𝜆𝑤0 + 𝜁𝑒−𝑝(𝜆) lies in 𝐺 when |𝜆| = 1,
then the same property holds when |𝜆| < 1.
Now themap taking 𝜆 to 𝑧0+𝜆𝑤0+𝜁𝑒−𝑝(𝜆) is an analytic disc inℂ𝑛 depending continuously

on the parameter 𝜁. When 𝜁 = 0, the analytic disc lies in 𝐺 by hypothesis. Also by hypoth-
esis, the boundaries of all these analytic discs lie in 𝐺. Hence version (b) of the continuity
principle (applied along the line segment joining 0 to 𝜁) implies that all the analytic discs lie
in 𝐺. Thus (3) implies (4).
Finally, suppose (4) holds, that is,− log 𝑑(𝑧) is plurisubharmonic. This function evidently

blows up at the boundary of 𝐺. The method for obtaining property (1) is to modify this func-
tion tomake the function both smooth and strictly plurisubharmonic. Here are the technical
details.
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To start, let 𝑢(𝑧) denote max(‖𝑧‖2,− log 𝑑(𝑧)). Evidently 𝑢 is a continuous, plurisubhar-
monic exhaustion function for 𝐺. Add a suitable constant to 𝑢 to ensure that the minimum
value of 𝑢 on 𝐺 is equal to 0. For each positive integer 𝑗, let 𝐺𝑗 denote the subset of 𝐺 on
which 𝑢 < 𝑗. These sets form an increasing sequence of relatively compact open subsets
of 𝐺.
Extend 𝑢 to be equal to 0 outside 𝐺. For each 𝑗, convolve 𝑢 with a smooth, radially sym-

metric mollifying function having small support to obtain an infinitely differentiable func-
tion on ℂ𝑛 that is plurisubharmonic on a neighborhood of the closure of 𝐺𝑗 and that closely
approximates 𝑢 from above on that neighborhood. Adding 𝜀𝑗‖𝑧‖2 for a suitably small positive
constant 𝜀𝑗 gives a smooth function 𝑢𝑗 on ℂ𝑛, strictly plurisubharmonic on a neighborhood
of the closure of 𝐺𝑗, such that 𝑢 < 𝑢𝑗 < 𝑢 + 1 on that neighborhood. It remains to splice
the functions 𝑢𝑗 together to get the required smooth, strictly plurisubharmonic exhaustion
function for 𝐺.
A natural way to build the final function is to use an infinite series. A simple way to

guarantee that the sum remains infinitely differentiable is tomake the series locally finite. To
carry out this plan, let 𝜒 be an infinitely differentiable, convex function of one real variable
such that 𝜒(𝑡) = 0 when 𝑡 ≤ 0, and both 𝜒′ and 𝜒′′ are positive when 𝑡 > 0.
Exercise 33. Verify that an example of such a function 𝜒 is

{
0, if 𝑡 ≤ 0,
𝑒𝑡𝑒−1∕𝑡, if 𝑡 > 0.

Exercise 34. Show that if 𝜑 is an increasing convex function of one real variable, and 𝑣 is a
plurisubharmonic function, then the composite function 𝜑◦𝑣 is plurisubharmonic. More-
over, if 𝜑 is strictly convex and 𝑣 is strictly plurisubharmonic, then 𝜑◦𝑣 is strictly plurisub-
harmonic.
The remainder of the proof consists of inductively choosing 𝑐𝑗 to be a suitable positive con-

stant to make the series
∑∞

𝑗=1 𝑐𝑗𝜒(𝑢𝑗(𝑧) − 𝑗 + 1) have the required properties. The induction

statement is that on the set 𝐺𝑘, the sum
∑𝑘

𝑗=1 𝑐𝑗𝜒(𝑢𝑗(𝑧) − 𝑗 + 1) is strictly plurisubharmonic
and larger than 𝑢(𝑧).
For the basis step (𝑘 = 1), observe that 𝑢1 is strictly larger than 𝑢 on a neighborhood of

the closure of 𝐺1 and hence is strictly positive there. By Exercise 34, the composite function
𝜒◦𝑢1 is strictly plurisubharmonic on the neighborhood. Take the constant 𝑐1 large enough
that 𝑐1𝜒◦𝑢1 exceeds 𝑢 on 𝐺1.
Suppose now that the induction statement holds for an integer 𝑘. There is a neighborhood

of the closure of 𝐺𝑘+1 such that if 𝑧 is in that neighborhood but outside 𝐺𝑘, then 𝑘 ≤ 𝑢(𝑧) <
𝑢𝑘+1(𝑧). For such 𝑧, the function 𝜒(𝑢𝑘+1(𝑧) − 𝑘) is positive and strictly plurisubharmonic.
Multiply by a sufficiently large constant 𝑐𝑘+1 to guarantee that

∑𝑘+1
𝑗=1 𝑐𝑗𝜒(𝑢𝑗(𝑧)−𝑗+1) is both

strictly plurisubharmonic and larger than 𝑢(𝑧) when 𝑧 is in 𝐺𝑘+1 but outside 𝐺𝑘. Since the
function 𝜒(𝑢𝑘+1(𝑧) − 𝑘) is nonnegative and (weakly) plurisubharmonic on all of 𝐺𝑘+1, the
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induction hypothesis implies that the sum of all 𝑘+1 terms is strictly plurisubharmonic and
larger than 𝑢 on all of 𝐺𝑘+1.
It remains to check that the infinite series does converge to an infinitely differentiable

function on 𝐺. This property is local, so it is enough to check the property on a ball whose
closure is contained in 𝐺 and hence in some 𝐺𝑚. If 𝑗 ≥ 𝑚 + 2, then 𝜒(𝑢𝑗(𝑧) − 𝑗 + 1) = 0
when 𝑧 ∈ 𝐺𝑚 (since 𝑢𝑗 < 𝑢 + 1 on 𝐺𝑗), so only finitely many terms contribute to the sum on
the ball. Hence the series converges to an infinitely differentiable function. The preceding
paragraph shows that the limit function is strictly plurisubharmonic. Since the sum exceeds
the exhaustion function 𝑢, the sum is an exhaustion function too.

3.3 The Levi problem
The characterizations of pseudoconvexity considered so far are essentially internal to the
domain. Eugenio Elia Levi (1883–1917) discovered27 a way to characterize pseudoconvexity
through the differential geometry of the boundary of the domain. This condition requires the
boundary to be a twice continuously differentiable manifold. Since Levi’s condition is local,
one ought first to observe that pseudoconvexity is indeed a local property of the boundary.

Theorem 17. A domain 𝐺 in ℂ𝑛 is pseudoconvex if and only if each boundary point of 𝐺
has an open neighborhood 𝑈 in ℂ𝑛 such that (each component of) the intersection 𝑈 ∩ 𝐺 is
pseudoconvex.

Proof. If𝐺 is pseudoconvex, and 𝐵 is a ball centered at a boundary point, then themaximum
of − log 𝑑𝐵(𝑧) and − log 𝑑𝐺(𝑧) is a plurisubharmonic exhaustion function for 𝐵 ∩𝐺, so (each
component of) the intersection 𝐵 ∩ 𝐺 is pseudoconvex.
Conversely, suppose each boundary point𝑝 of𝐺 has aneighborhood𝑈 such that− log 𝑑𝑈∩𝐺

is a plurisubharmonic function on𝑈∩𝐺. The neighborhood𝑈 contains a ball centered at 𝑝,
and if 𝑧 lies in the concentric ball 𝐵 of half the radius, then the distance from 𝑧 to the bound-
ary of𝐺 is less than the distance from 𝑧 to the boundary of𝑈. Therefore the function− log 𝑑𝐺
is plurisubharmonic on 𝐵 ∩𝐺, being equal on this set to the function − log 𝑑𝑈∩𝐺. The union
of such balls for all boundary points of 𝐺 is an open neighborhood 𝑉 of the boundary of 𝐺
such that − log 𝑑𝐺 is plurisubharmonic on 𝑉 ∩ 𝐺. What remains to accomplish is to mod-
ify this function to get a plurisubharmonic exhaustion function defined on all of 𝐺. If 𝐺 is
bounded, then 𝐺 ⧵ 𝑉 is a compact set, and − log 𝑑𝐺 has an upper bound 𝑀 on 𝐺 ⧵ 𝑉. The
continuous function − log 𝑑𝐺 is less than 𝑀 + 1 on an open neighborhood of 𝐺 ⧵ 𝑉, and
max{𝑀 + 1,− log 𝑑𝐺} is a plurisubharmonic exhaustion function for 𝐺.
If 𝐺 is unbounded, then the set 𝐺 ⧵ 𝑉 is closed but not necessarily compact. For each

nonnegative real number 𝑟, the continuous function − log 𝑑𝐺 has a maximum value on the
intersection of𝐺⧵𝑉 with the closed ball of radius 𝑟 centered at 0. By Exercise 35 below, there

27E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse,
Annali di Matematica Pura ed Applicata (3) 17 (1910) 61–87.
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is a continuous function 𝜑(‖𝑧‖) that is plurisubharmonic on ℂ𝑛, exceeds − log 𝑑𝐺(𝑧) when
𝑧 is in 𝐺 ⧵𝑉, and blows up at infinity. Thenmax{𝜑(‖𝑧‖),− log 𝑑𝐺(𝑧)} is a plurisubharmonic
exhaustion function for 𝐺, so 𝐺 is pseudoconvex.

Although pseudoconvexity is a local property of the boundary of a domain, none of the
properties so far shown to be equivalent to holomorphic convexity appears to be local. Given
a locally defined holomorphic function that is singular at a boundary point of a domain,
there is no obvious way to create a globally defined holomorphic function that is singular at
the point. The essence of the Levi problem—the equivalence between pseudoconvexity and
holomorphic convexity—is to show that being a domain of holomorphy actually is a local
property of the boundary of the domain.
Exercise 35. If 𝑔 is a continuous function on [0,∞), then there exists an increasing convex
function 𝜑 such that 𝜑(𝑡) > 𝑔(𝑡) for every 𝑡.

3.3.1 The Levi form
Suppose that in a neighborhood of a boundary point of a domain there exists a real-valued
defining function 𝜌. In other words, the boundary of the domain is the set where 𝜌 = 0, the
interior of the domain is the set where 𝜌 < 0, and the exterior of the domain is the set where
𝜌 > 0. Suppose additionally that𝜌has continuous partial derivatives of second order and that
the gradient of 𝜌 is nowhere equal to 0 on the boundary of the domain. The implicit function
theorem then implies that the boundary of the domain (in the specified neighborhood) is
a twice differentiable real manifold. The abbreviation for this set of conditions is that the
domain has “class 𝐶2 boundary” or “class 𝐶2 smooth boundary.”
Levi’s local condition is that at boundary points of the domain,

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 ≥ 0 whenever
𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗 = 0.

This condition is weaker than plurisubharmonicity of the defining function 𝜌 in two ways:
the inequality holds only at boundary points of the domain, not on an open set; and the
inequality holds only for certain vectors𝑤 inℂ𝑛, namely, for complex tangent vectors (vectors
satisfying the side condition). The indicated Hermitian quadratic form, restricted to act on
the complex tangent space, is known as the Levi form. If the Levi form is strictly positive
definite everywhere on the boundary, then the domain is called strictly pseudoconvex (or
strongly pseudoconvex).
Exercise 36. Even though the Levi form depends on the choice of the defining function 𝜌,
the positivity (or nonnegativity) of the Levi form is independent of the choice of defining
function. Moreover, positivity (or nonnegativity) of the Levi form is invariant under local
biholomorphic changes of coordinates.
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Levi’s condition can be rephrased as the existence of a positive constant 𝐶 such that

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 + 𝐶‖𝑤‖
|||||||

𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗

|||||||
≥ 0 for every vector 𝑤 in ℂ𝑛.

The constant 𝐶 can be taken to be locally independent of the point where the derivatives are
being evaluated. An advantage of this reformulation is the elimination of the side condition
about the complex tangent space: the inequality now holds for every vector 𝑤. The second
formulation evidently implies the first statement of Levi’s condition. To see, conversely, that
Levi’s condition implies the reformulation, decompose an arbitrary vector𝑤 into an orthogo-
nal sum𝑤′+𝑤′′, where

∑𝑛
𝑗=1 𝜌𝑗𝑤

′
𝑗 = 0 (here 𝜌𝑗 is a typographically convenient abbreviation

for 𝜕𝜌∕𝜕𝑧𝑗), and
∑𝑛

𝑗=1 𝜌𝑗𝑤
′′
𝑗 =

∑𝑛
𝑗=1 𝜌𝑗𝑤𝑗. By hypothesis, the length of the gradient of 𝜌 is lo-

cally bounded away from 0, so the length of the vector𝑤′′ is comparable to
∑𝑛

𝑗=1 𝜌𝑗𝑤𝑗. Levi’s
condition implies that

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 =
𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤′
𝑗𝑤

′
𝑘 + 𝑂(‖𝑤‖ ‖𝑤′′‖) ≥ −𝐶‖𝑤‖

|||||||

𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗

|||||||

for some constant 𝐶, which is the reformulated version of the Levi condition.

Theorem 18. A domain with class 𝐶2 smooth boundary is pseudoconvex if and only if the Levi
form is positive semi-definite at each boundary point.

Proof. First suppose that the domain 𝐺 is pseudoconvex in the sense that the negative of the
logarithm of the distance to the boundary of𝐺 is plurisubharmonic. A convenient function 𝜌
to use as defining function is the signed distance to the boundary:

𝜌(𝑧) = {
−dist(𝑧, 𝑏𝐺), 𝑧 ∈ 𝐺,
+dist(𝑧, 𝑏𝐺), 𝑧 ∉ 𝐺.

The implicit function theorem implies that this defining function is class 𝐶2 in a neighbor-
hood of the boundary of 𝐺. By hypothesis, the complex Hessian of − log |𝜌| is nonnegative
in the part of this neighborhood inside 𝐺:

𝑛∑

𝑗=1

𝑛∑

𝑘=1
(−

1
𝜌

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

+ 1
𝜌2

𝜕𝜌
𝜕𝑧𝑗

𝜕𝜌
𝜕𝑧𝑘

)𝑤𝑗𝑤𝑘 ≥ 0 for every 𝑤 in ℂ𝑛.

But −1∕𝜌 is positive at points inside the domain, so

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 ≥ 0 when
𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗 = 0.
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As observed just before the statement of the theorem, this Levi condition is equivalent to the
existence of a positive constant 𝐶 such that

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 + 𝐶‖𝑤‖
|||||||

𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗

|||||||
≥ 0 for every vector 𝑤 in ℂ𝑛.

The constant 𝐶 depends on the maximum of the second derivatives of 𝜌 and the maximum
of 1∕|∇𝜌|, and these quantities are bounded near the boundary of 𝐺 by hypothesis. The
continuity of the second derivatives of 𝜌 implies that the inequality persists on the boundary
of 𝐺, and Levi’s condition follows.
Conversely, suppose that Levi’s conditionholds. What is required is to construct a plurisub-

harmonic exhaustion function for the domain𝐺. In view of Theorem 17, a local construction
suffices.
The implicit function theorem implies that a boundary of class 𝐶2 is locally the graph of a

twice continuously differentiable real-valued function. After a complex-linear change of co-
ordinates, a local defining function𝜌 takes the form𝜑(Re 𝑧1, Im 𝑧1,… ,Re 𝑧𝑛−1, Im 𝑧𝑛−1,Re 𝑧𝑛)−
Im 𝑧𝑛. The hypothesis is the existence of a positive constant 𝐶 such that at boundary points
in a local neighborhood,

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 + 2𝐶‖𝑤‖
|||||||

𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗

|||||||
≥ 0 for every vector 𝑤 in ℂ𝑛

(where a factor of 2 has been inserted for later convenience). Since 𝜌 depends linearly on
Im 𝑧𝑛, all derivatives of 𝜌 are independent of Im 𝑧𝑛. Thus the preceding condition holds not
only locally on the boundary of 𝐺 but also locally off the boundary, say in some ball in ℂ𝑛.
Let 𝑢 denote− log |𝜌|. The goal is tomodify the function 𝑢 to get a local plurisubharmonic

function in𝐺 that blows up at the boundary. At points inside𝐺, the same calculation as above
shows that

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝑢
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 =
1
|𝜌|

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 +
1
𝜌2

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕𝜌
𝜕𝑧𝑗

𝜕𝜌
𝜕𝑧𝑘

𝑤𝑗𝑤𝑘

≥ −2𝐶
|𝜌|

‖𝑤‖
|||||||

𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗

|||||||
+ 1
𝜌2
|||||||

𝑛∑

𝑗=1

𝜕𝜌
𝜕𝑧𝑗

𝑤𝑗

|||||||

2

for every vector 𝑤 in ℂ𝑛. But −2𝑎𝑏 ≥ −𝑎2 − 𝑏2 for real numbers 𝑎 and 𝑏, so

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝑢
𝜕𝑧𝑗𝜕𝑧𝑘

𝑤𝑗𝑤𝑘 ≥ −𝐶2 ‖𝑤‖2.

The preceding inequality implies that 𝑢(𝑧)+𝐶2‖𝑧‖2 is a plurisubharmonic function in the
intersection of 𝐺 with a small ball 𝐵 centered at a boundary point 𝑎, and this function blows
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up at the boundary of𝐺. If the ball𝐵 has radius 𝑟, thenmax{− log(𝑟−‖𝑧−𝑎‖), 𝑢(𝑧)+𝐶2‖𝑧‖2}
is a plurisubharmonic exhaustion function for 𝐵 ∩ 𝐺. Thus 𝐺 is locally pseudoconvex near
every boundary point, so by Theorem 17, the domain 𝐺 is pseudoconvex.

In view of Levi’s condition, the notion of pseudoconvexity can be rephrased as follows.

Theorem 19. A domain is pseudoconvex if and only if the domain can be expressed as the
union of an increasing sequence of class 𝐶∞ smooth domains each of which is locally biholo-
morphically equivalent to a strongly convex domain.

Proof. A convex domain is pseudoconvex, and pseudoconvexity is a local property that is
biholomorphically invariant, so a domain that is locally equivalent to a convex domain is
pseudoconvex. Version (b) of the Kontinuitätssatz implies that an increasing union of pseu-
doconvex domains is pseudoconvex. Thus one direction of the theorem follows by putting
together prior results.
Conversely, suppose that 𝐺 is a pseudoconvex domain. Then 𝐺 admits an infinitely differ-

entiable, strictly plurisubharmonic exhaustion function 𝑢. Fix a base point in 𝐺, let 𝑐 be a
large real number, and consider the connected component of the set where 𝑢 < 𝑐 that con-
tains the base point. By Sard’s theorem,28 the gradient of 𝑢 is nonzero on the set where 𝑢 = 𝑐
for almost every value of 𝑐 (all but a set of measure zero in ℝ). Thus 𝐺 is exhausted by an
increasing sequence of 𝐶∞ smooth, strictly pseudoconvex domains.
What remains to show is that each smooth level set where the strictly plurisubharmonic

function 𝑢 equals a value 𝑐 is locally equivalent to a strongly convex domain via a local bi-
holomorphic mapping. Fix a point 𝑎 such that 𝑢(𝑎) = 𝑐, and consider the Taylor expansion
of 𝑢(𝑧) − 𝑐 in a neighborhood of 𝑎: namely,

2Re[
𝑛∑

𝑗=1

𝜕𝑢
𝜕𝑧𝑗

(𝑎)(𝑧𝑗 − 𝑎𝑗) +
1
2

𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝑢
𝜕𝑧𝑗𝜕𝑧𝑘

(𝑎)(𝑧𝑗 − 𝑎𝑗)(𝑧𝑘 − 𝑎𝑘)]

+
𝑛∑

𝑗=1

𝑛∑

𝑘=1

𝜕2𝑢
𝜕𝑧𝑗𝜕𝑧𝑘

(𝑎)(𝑧𝑗 − 𝑎𝑗)(𝑧𝑘 − 𝑎𝑘) + 𝑂(‖𝑧 − 𝑎‖3).
(3.1)

The expression whose real part appears on the first line of (3.1) is a holomorphic function
of 𝑧 with nonzero gradient at the point 𝑎. This function will serve as the first coordinate 𝑤1
of a local biholomorphic change of coordinates 𝑤(𝑧) such that 𝑤(𝑎) = 0. In a neighborhood
of the point 𝑎, the level surface on which 𝑢(𝑧) − 𝑐 = 0 has a defining function 𝜌(𝑤) in the
new coordinates of the form

2Re𝑤1 +
𝑛∑

𝑗=1

𝑛∑

𝑘=1
𝐿𝑗𝑘𝑤𝑗𝑤𝑘 + 𝑂(‖𝑤‖3),

28Arthur Sard, Themeasure of the critical values of differentiablemaps, Bulletin of the AmericanMathematical
Society 48 (1942) 883–890. Since the function 𝑢 takes values inℝ1, the claim already follows from an earlier
result of Anthony P. Morse, The behavior of a function on its critical set, Annals of Mathematics (2) 40
(1939), number 1, 62–70.
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where the matrix 𝐿𝑗𝑘 is a positive definite Hermitian matrix corresponding to the positive
definite matrix 𝑢𝑗𝑘 in the new coordinates. Thus the quadratic part of the real Taylor expan-
sion of 𝜌 in the real coordinates corresponding to 𝑤 is positive definite, which means that
the level set on which 𝜌 = 0 is strongly convex in the real sense.

Exercise 37. Solve the Levi problem for complete Reinhardt domains in ℂ2 by showing that
Levi’s condition in this setting is equivalent to logarithmic convexity.

3.3.2 Applications of the 𝜕 problem
Theorem 17 shows that pseudoconvexity is a local property of the boundary of a domain, but
the corresponding local nature of holomorphic convexity is far from obvious. To solve the
Levi problem for a general pseudoconvex domain, one needs some technical machinery to
forge the connection between the local and the global. One approach is sheaf theory, another
is integral representations, and a third is the 𝜕-equation. The following discussion uses the
third method, which seems the most intuitive.
Some notation is needed. If 𝑓 is a function, then 𝜕𝑓 denotes

∑𝑛
𝑗=1(𝜕𝑓∕𝜕𝑧𝑗)𝑑𝑧𝑗, a so-called

(0, 1)-form. A function 𝑓 is holomorphic precisely when 𝜕𝑓 = 0. The question of interest
here is whether a given (0, 1)-form 𝛽, say

∑𝑛
𝑗=1 𝑏𝑗(𝑧)𝑑𝑧𝑗, can be written as 𝜕𝑓 for some func-

tion 𝑓. Necessary conditions for the mixed second-order partial derivatives of 𝑓 to match are
that 𝜕𝑏𝑗∕𝜕𝑧𝑘 = 𝜕𝑏𝑘∕𝜕𝑧𝑗 for every 𝑗 and 𝑘. These conditions are abbreviated by writing that
𝜕𝛽 = 0; in words, the form 𝛽 is 𝜕-closed.
The key ingredient for solving the Levi problem is the following theorem about solvability

of the inhomogeneous Cauchy–Riemann equations.

Theorem 20. Let 𝐺 be a bounded pseudoconvex domain in ℂ𝑛 with 𝐶∞ smooth boundary. If
𝛽 is a 𝜕-closed (0, 1)-form with 𝐶∞ coefficients in 𝐺, then there exists a 𝐶∞ function 𝑓 in 𝐺 such
that 𝜕𝑓 = 𝛽.

The conclusion holds without any hypothesis about boundary smoothness, but then the
proof is more technical. For present purposes, proving the theorem under the additional
hypothesis of strong pseudoconvexity suffices.

Solution of the Levi problem for bounded strongly pseudoconvex domains

Granted Theorem 20, one can easily solve the Levi problem for the approximating strongly
pseudoconvex domains arising in the proof of Theorem 19. Indeed, let 𝐺 be a bounded do-
main with boundary defined by an infinitely differentiable, strictly plurisubharmonic func-
tion. (One need not assume here that the gradient of the defining function is nonzero on the
boundary of𝐺, for Theorem 20will be applied not on𝐺 but on a smooth domain approximat-
ing𝐺 from outside.) Showing that𝐺 is a (weak) domain of holomorphy requires producing a
global holomorphic function on𝐺 that is singular at a specified boundary point 𝑝. The proof
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of Theorem 19 provides a holomorphic function 𝑓𝑝 defined in a neighborhood of 𝑝, equal
to 0 at 𝑝, and zero-free on the part of 𝐺 ⧵ {𝑝} in the neighborhood. Indeed, the polynomial
whose real part appears in the first line of formula (3.1) will serve for 𝑓𝑝, since the expression
on the second line of (3.1) is strictly positive on a small punctured neighborhood of 𝑝. The
goal is to modify 1∕𝑓𝑝, the locally defined reciprocal function, to obtain a globally defined
function on 𝐺 that is singular at 𝑝.
Let 𝜒 be a smooth, real-valued, nonnegative cut-off function that is identically equal to 1

in a neighborhood of 𝑝 and identically equal to 0 outside a larger neighborhood (contained
in the set where 𝑓𝑝 is defined). The function 𝜒∕𝑓𝑝 is defined globally on 𝐺 and blows up
at 𝑝, but 𝜒∕𝑓𝑝 is not globally holomorphic. The tool for adjusting this function to get a
holomorphic function is the theorem on solvability of the 𝜕-equation.
The (0, 1) form (𝜕𝜒)∕𝑓𝑝 is identically equal to 0 in a neighborhood of 𝑝, and the zero

set of 𝑓𝑝 touches 𝐺 only at 𝑝 inside the support of 𝜒. Therefore the form (𝜕𝜒)∕𝑓𝑝 has 𝐶∞

coefficients in a neighborhood 𝐷 of 𝐺, which may be taken to be a strictly pseudoconvex
domain with 𝐶∞ smooth boundary. The form (𝜕𝜒)∕𝑓𝑝 is 𝜕-closed on this domain 𝐷, since
𝜕𝜒 is 𝜕-closed, and 1∕𝑓𝑝 is holomorphic away from the zeros of 𝑓𝑝. Theorem 20 produces
an infinitely differentiable function 𝑣 on 𝐷 such that 𝜕𝑣 = (𝜕𝜒)∕𝑓𝑝.
The function 𝑣 − (𝜒∕𝑓𝑝) is a holomorphic function on the set where 𝑓𝑝 ≠ 0, hence on

𝐺 ⧵ {𝑝}. The function 𝑣, being smooth on 𝐺, is bounded there, so the holomorphic function
𝑣 − (𝜒∕𝑓𝑝) is singular at 𝑝. Since there exists a holomorphic function on all of 𝐺 that is
singular at a prescribed boundary point, the domain 𝐺 is a weak domain of holomorphy,
hence (by Theorem 13) a domain of holomorphy.
The preceding argument solves the Levi problem for bounded strictly pseudoconvex do-

mains, modulo the proof of solvability of the 𝜕-equation.
It is worthwhile noticing that this argument implies the existence of a peak function at

an arbitrary boundary point 𝑝 of a strictly pseudoconvex domain 𝐺: namely, a holomorphic
function ℎ on a neighborhood of 𝐺 that takes the value 1 at 𝑝 and has absolute value strictly
less than 1 everywhere on𝐺 ⧵ {𝑝}. Indeed, to construct a peak function, first observe that the
function 𝑓𝑝 obtained from formula (3.1) has negative real part on the intersection of 𝐺 ⧵ {𝑝}
with a small neighborhood of𝑝. Let 𝑐 be a real constant larger than themaximumof |𝑣| on𝐺,
and let 𝑔 denote the function 1∕[𝑐 + 𝑣 − (𝜒∕𝑓𝑝)]. Then 𝑔 is well defined and holomorphic
on 𝐺 ⧵ {𝑝}, because the denominator has positive real part (and so is nonzero). On the other
hand, in the neighborhood of 𝑝 where the cut-off function 𝜒 is identically equal to 1, the
function 𝑔 equals 𝑓𝑝∕[(𝑐 + 𝑣)𝑓𝑝 − 1], so 𝑔 is holomorphic in a small neighborhood of 𝑝 and
equals 0 at 𝑝. Thus 𝑔 is holomorphic in a neighborhood of𝐺, has positive real part on𝐺⧵{𝑝},
and equals 0 at 𝑝. Therefore 𝑒−𝑔 serves as the required holomorphic peak function ℎ.
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Proof of the Oka–Weil theorem

Another application of the solvability of the 𝜕-equation on strongly pseudoconvex domains
is the Oka–Weil theorem (Theorem 12). Indeed, the tools are at hand to prove the following
generalization.

Theorem 21. If 𝐺 is a domain of holomorphy in ℂ𝑛, and 𝐾 is a compact subset of 𝐺 that is
convex with respect to the holomorphic functions on 𝐺, then every function holomorphic in a
neighborhood of 𝐾 can be approximated uniformly on 𝐾 by functions holomorphic on 𝐺.

Theorem 12 follows by taking𝐺 equal toℂ𝑛, because convexity with respect to entire func-
tions is the same as polynomial convexity, and approximation by entire functions is equiva-
lent to approximation by polynomials.

Proof of Theorem 21. Suppose 𝑓 is holomorphic in an open neighborhood 𝑈 of 𝐾, and 𝜀 is a
specified positive number. The goal is to approximate 𝑓 on 𝐾 within 𝜀 by functions that are
holomorphic on the domain 𝐺. There is no loss of generality in supposing that the closure
of the neighborhood 𝑈 is a compact subset of 𝐺.
Let 𝐿 be a compact subset of 𝐺 containing 𝑈 and convex with respect to 𝒪(𝐺). The initial

goal is to show that 𝑓 can be approximated on 𝐾 within 𝜀 by functions that are holomorphic
in a neighborhood of 𝐿. Then a limiting argument as 𝐿 expands will finish the proof.
Fix an open neighborhood 𝑉 of 𝐿 having compact closure in 𝐺. The first observation is

that there are finitely many holomorphic functions 𝑓1, . . . , 𝑓𝑘 on 𝐺 such that

𝐾 ⊆ { 𝑧 ∈ 𝑉 ∶ |𝑓1(𝑧)| ≤ 1,… , |𝑓𝑘(𝑧)| ≤ 1 } ⊂ 𝑈.

In other words, the compact set 𝐾 can be closely approximated from outside by a compact
analytic polyhedron defined by functions that are holomorphic on 𝐺. The reason is simi-
lar to the proof of Theorem 9: the set 𝑉 ⧵ 𝑈 is compact, and each point of this set can be
separated from the holomorphically convex set𝐾 by a function holomorphic on𝐺, so a com-
pactness argument furnishes a finite number of separating functions. Hence there is no loss
of generality in assuming from the start that 𝐾 is equal to the indicated analytic polyhedron.
For the same reason, the holomorphically convex compact set 𝐿 can be approximated from

outside by a compact analytic polyhedron contained in 𝑉 and defined by a finite number of
functions holomorphic on 𝐺. Again, one might as well assume that 𝐿 equals that analytic
polyhedron.
The main step in the proof is to show that functions holomorphic in a neighborhood of 𝐿

are dense in the functions holomorphic in a neighborhood of { 𝑧 ∈ 𝐿 ∶ |𝑓1(𝑧)| ≤ 1 }. An
evident induction on the number of functions defining the polyhedron 𝐾 then implies that
𝒪(𝐿) is dense in 𝒪(𝐾).
At this point, Oka’s great insight enters: Oka had the idea that raising the dimension by

looking at the graph of 𝑓1 can simplify matters. Let 𝐿1 denote { 𝑧 ∈ 𝐿 ∶ |𝑓1(𝑧)| ≤ 1 }, and
let 𝐷 denote the closed unit disc in ℂ. The claim is that if 𝑔 is a holomorphic function in a
neighborhood of 𝐿1, then there is a corresponding function 𝐹(𝑧, 𝑤) in ℂ𝑛 × ℂ, holomorphic
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in a neighborhood of 𝐿 × 𝐷, such that 𝑔(𝑧) = 𝐹(𝑧, 𝑓1(𝑧)) when 𝑧 is in a neighborhood of 𝐿1.
In other words, there is a holomorphic function on all of 𝐿×𝐷 whose restriction to the graph
of 𝑓1 recovers 𝑔 on 𝐿1.
How does this construction help? The point is that 𝐹 can be expanded in a Maclaurin

series in the last variable, 𝐹(𝑧, 𝑤) =
∑∞

𝑗=0 𝑎𝑗(𝑧)𝑤
𝑗, in which the coefficient functions 𝑎𝑗 are

holomorphic on 𝐿. Then 𝑔(𝑧) =
∑∞

𝑗=0 𝑎𝑗(𝑧)𝑓1(𝑧)
𝑗 in a neighborhood of 𝐿1, and the partial

sums of this series are holomorphic functions on 𝐿 that uniformly approximate 𝑔 on 𝐿1.
To construct 𝐹, take an infinitely differentiable cut-off function 𝜒 in ℂ𝑛 that is identically

equal to 1 in a neighborhood of 𝐿1 and that is identically equal to 0 outside a slightly larger
neighborhood (contained in the set where 𝑔 is defined). Consider in ℂ𝑛+1 the (0, 1)-form

𝑔(𝑧) 𝜕𝜒(𝑧)
𝑓1(𝑧) − 𝑤

, where 𝑧 ∈ ℂ𝑛, and 𝑤 ∈ ℂ.

This (0, 1)-form is well defined and smooth on a neighborhood of 𝐿 × 𝐷, for if 𝑧 lies in the
support of 𝜕𝜒, then 𝑧 lies outside a neighborhood of 𝐿1, whence |𝑓1(𝑧)| > 1, and the de-
nominator of the form is nonzero. Evidently the form is 𝜕-closed. The compact analytic
polyhedron 𝐿 can be approximated from outside by open analytic polyhedra, so 𝐿 × 𝐷 can
be approximated from outside by domains of holomorphy (more precisely, each connected
component can be so approximated). By Theorem 19, the compact set 𝐿 × 𝐷 can be approx-
imated from outside by bounded, smooth, strongly pseudoconvex open sets. Consequently,
the solvability of the 𝜕-equation guarantees the existence of a smooth function 𝑣 in a neigh-
borhood of 𝐿×𝐷 such that 𝑔(𝑧)𝜒(𝑧)−𝑣(𝑧, 𝑤)(𝑓1(𝑧)−𝑤) is holomorphic on 𝐿×𝐷. The latter
function is the required holomorphic function 𝐹(𝑧, 𝑤) on 𝐿 ×𝐷 such that 𝐹(𝑧, 𝑓1(𝑧)) = 𝑔(𝑧)
on 𝐿1.
The proof is now complete that 𝒪(𝐿) is dense in 𝒪(𝐾). What remains is to approximate a

function holomorphic in a neighborhood of𝐾 by a function holomorphic on all of 𝐺. To this
end, let {𝐾𝑗}∞𝑗=0 be an exhaustion of 𝐺 by an increasing sequence of holomorphically convex,
compact subsets of 𝐺, each containing an open neighborhood of the preceding one, where
the initial set 𝐾0 may be taken equal to 𝐾. By what has already been proved, 𝒪(𝐾𝑗) is dense
in 𝒪(𝐾𝑗−1) for every positive integer 𝑗. Suppose given a function 𝑓 holomorphic in a neigh-
borhood of 𝐾0 and a positive 𝜀. There is a function ℎ1 holomorphic in a neighborhood of 𝐾1
such that |𝑓−ℎ1| < 𝜀∕2 on𝐾0. For 𝑗 > 1, inductively choose ℎ𝑗 holomorphic on𝐾𝑗 such that
|ℎ𝑗 − ℎ𝑗−1| < 𝜀∕2𝑗 on 𝐾𝑗−1. The telescoping series ℎ1 +

∑∞
𝑗=2(ℎ𝑗 − ℎ𝑗−1) then converges uni-

formly on every compact subset of𝐺 to a holomorphic function that approximates 𝑓 within 𝜀
on 𝐾0.

Solution of the Levi problem for arbitrary pseudoconvex domains

What has been shown so far is that if 𝐺 is a pseudoconvex domain, then there exists an
infinitely differentiable, strictly plurisubharmonic exhaustion function 𝑢, and the Levi prob-
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lem is solvable for the sublevel sets of 𝑢, which are thus domains of holomorphy. A limiting
argument is needed to show that 𝐺 itself is a domain of holomorphy.
For each real number 𝑟, let 𝐺𝑟 denote the sublevel set { 𝑧 ∈ 𝐺 ∶ 𝑢(𝑧) < 𝑟 }, and let 𝐺𝑟

denote the closure, the set { 𝑧 ∈ 𝐺 ∶ 𝑢(𝑧) ≤ 𝑟 }. The key lemma is that 𝒪(𝐺𝑡) is dense in
𝒪(𝐺𝑟) when 𝑡 > 𝑟.
In view of the preceding approximation result, Theorem 21, what needs to be shown is that

the compact set 𝐺𝑟 is convex with respect to the holomorphic functions on 𝐺𝑡. Since 𝐺𝑡 is a
domain of holomorphy, the hull of 𝐺𝑟 with respect to the holomorphic functions on 𝐺𝑡 is a
compact subset of 𝐺𝑡. Seeking a contradiction, suppose that this hull properly contains 𝐺𝑟.
Then the exhaustion function 𝑢 attains a maximal value 𝑠 on the hull, where 𝑟 < 𝑠 < 𝑡,
and this maximal value is assumed at some point 𝑝 on the boundary of 𝐺𝑠. As observed on
page 77, there is a holomorphic peak function ℎ for𝐺𝑠 at 𝑝 such that ℎ(𝑝) = 1, and |ℎ(𝑧)| < 1
when 𝑧 ∈ 𝐺𝑠. Since ℎ is holomorphic in a neighborhood of the holomorphically convex hull
of 𝐺𝑟 with respect to 𝐺𝑡, the function ℎ can be approximated on this hull by functions holo-
morphic on 𝐺𝑡 (by Theorem 21). Since ℎ separates 𝑝 from 𝐺𝑟, so do holomorphic functions
on𝐺𝑡, and therefore 𝑝 is not in the holomorphic hull of𝐺𝑟 after all. The contradiction shows
that 𝐺𝑟 is 𝒪(𝐺𝑡)-convex, so Theorem 21 implies that 𝒪(𝐺𝑡) is dense in 𝒪(𝐺𝑟).
The same argument as in thefinal paragraph of the proof of Theorem21 (with a telescoping

series) now shows that 𝒪(𝐺) is dense in 𝒪(𝐺𝑟) for every 𝑟.
To prove that 𝐺 is a domain of holomorphy, fix a compact subset 𝐾. What needs to be

shown is that 𝐾𝐺 is a compact subset of 𝐺. Fix a real number 𝑟 so large that 𝐾 is a compact
subset of 𝐺𝑟. Since 𝐺𝑟 is a domain of holomorphy, the hull𝐾𝐺𝑟 is a compact subset of 𝐺𝑟. The
claim now is that 𝐾𝐺 ⊆ 𝐾𝐺𝑟 (whence 𝐾𝐺 = 𝐾𝐺𝑟 , since 𝐾𝐺𝑟 automatically is a subset of 𝐾𝐺).
In other words, the claim is that if 𝑝 ∉ 𝐾𝐺𝑟 , then there is a holomorphic function on 𝐺 that
separates 𝑝 from 𝐾.
If 𝑝 ∈ 𝐺𝑟, then there is no difficulty, because there is a holomorphic function on 𝐺𝑟 that

separates 𝑝 from 𝐾, and 𝒪(𝐺) is dense in 𝒪(𝐺𝑟). If 𝑝 ∉ 𝐺𝑟, then choose some 𝑠 larger than 𝑟
for which 𝑝 ∈ 𝐺𝑠. Since 𝒪(𝐺𝑠) is dense in 𝒪(𝐺𝑟), the intersection of 𝐾𝐺𝑠 with 𝐺𝑟 equals 𝐾𝐺𝑟 .
Therefore the function that is identically equal to 0 in a neighborhood of 𝐾𝐺𝑟 and identically
equal to 1 in a neighborhood of 𝐺 ⧵𝐺𝑟 is holomorphic on 𝐾𝐺𝑠 . By Theorem 21, this function
can be approximated on𝐾𝐺𝑠 by functions holomorphic on 𝐺𝑠 and hence (since𝒪(𝐺) is dense
in 𝒪(𝐺𝑠)) by functions holomorphic on 𝐺. Thus the point 𝑝 can be separated from 𝐾 by
functions holomorphic on 𝐺, so 𝑝 is not in 𝐾𝐺.
The argument has shown that the pseudoconvex domain 𝐺 is holomorphically convex, so

𝐺 is a domain of holomorphy. The solution of the Levi problem for pseudoconvex domains
is now complete, except for proving the solvability of the 𝜕-equation on bounded strongly
pseudoconvex domains with smooth boundary.
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3.3.3 Solution of the 𝜕-equation on smooth pseudoconvex domains
The above resolution of the Levi problem requires knowing that the 𝜕-equation is solvable
on a bounded, strongly pseudoconvex domain 𝐺 with smooth boundary. The following dis-
cussion proves this solvability by using ideas developed in the 1950s and 1960s by Charles B.
Morrey, Donald C. Spencer, Joseph J. Kohn, and Lars Hörmander.
The method is based on Hilbert-space techniques. The relevant Hilbert space is 𝐿2(𝐺), the

space of square-integrable functions on𝐺 with inner product ⟨𝑓, 𝑔⟩ equal to ∫𝐺 𝑓 𝑔 𝑑𝑉, where
𝑑𝑉 denotes Lebesgue volume measure. The inner product extends to differential forms by
summing the inner products of components of the forms.
The operator 𝜕 acts on square-integrable functions in the sense of distributions, so one

can view 𝜕 as an unbounded operator from the space 𝐿2(𝐺) to the space of (0, 1)-forms with
coefficients in 𝐿2(𝐺). A function 𝑓 lies in the domain of the operator 𝜕 when the distribu-
tional coefficients of 𝜕𝑓 are represented by square-integrable functions. Since the compactly
supported, infinitely differentiable functions are dense in 𝐿2(𝐺), the operator 𝜕 is a densely
defined operator, and routine considerations show that this operator is a closed operator.
Consequently, there is a Hilbert-space adjoint 𝜕

∗
, which too is a closed, densely defined op-

erator.
If 𝑓 is a (0, 1)-form

∑𝑛
𝑗=1 𝑓𝑗 𝑑𝑧𝑗, then

𝜕𝑓 =
∑

1≤𝑗<𝑘≤𝑛
(
𝜕𝑓𝑗
𝜕𝑧𝑘

−
𝜕𝑓𝑘
𝜕𝑧𝑗

) 𝑑𝑧𝑘 ∧ 𝑑𝑧𝑗.

If you are unfamiliar with the machinery of differential forms, then you can view the pre-
ceding expression as simply a formal gadget that is a convenient notation for stating the
necessary condition for solvability of the equation 𝜕𝑢 = 𝑓: namely, that 𝜕𝑓 = 0. The goal is
to show that this necessary condition is sufficient on bounded pseudoconvex domains with
𝐶∞ smooth boundary. Moreover, the solution 𝑢 is infinitely differentiable if the coefficients
of 𝑓 are infinitely differentiable. (The solution 𝑢 is not unique, because any holomorphic
function can be subtracted from 𝑢, but if one solution is an infinitely differentiable function
in 𝐺, then every solution is infinitely differentiable.)

Reduction to an estimate

The claim is that thewhole problem boils down to proving the following basic estimate: there
exists a constant 𝐶 such that

‖𝑓‖2 ≤ 𝐶(‖𝜕𝑓‖2 + ‖𝜕
∗
𝑓‖2) (3.2)

for every (0, 1)-form 𝑓 that belongs to both the domain of 𝜕 and the domain of 𝜕
∗
. The con-

stant 𝐶 turns out to depend on the diameter of the domain, so boundedness of the domain
is important. Why does this estimate imply solvability of the 𝜕-equation?
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Suppose that 𝑔 is a specified 𝜕-closed (0, 1)-form with coefficients in 𝐿2(𝐺). Consider the
mapping that sends 𝜕

∗
𝑓 to ⟨𝑓, 𝑔⟩ when 𝑓 is a (0, 1)-form belonging to both the domain of 𝜕

∗

and the kernel of 𝜕. The basic estimate implies that ‖𝜕
∗
𝑓‖ dominates ‖𝑓‖, so this mapping

is a well-defined bounded linear operator on the subspace 𝜕
∗
(dom 𝜕

∗
∩ ker 𝜕) of 𝐿2(𝐺).

TheRiesz representation theoremproduces a square-integrable function𝑢 such that ⟨𝜕
∗
𝑓, 𝑢⟩ =

⟨𝑓, 𝑔⟩ for every 𝑓 in the intersection of the domain of 𝜕
∗
and the kernel of 𝜕. On the other

hand, if 𝑓 is in the intersection of the domain of 𝜕
∗
and the orthogonal complement of the

kernel of 𝜕, then the same equality holds trivially because sides vanish (namely, ⟨𝑓, 𝑔⟩ = 0
because 𝑔 is in the kernel of 𝜕; similarly ⟨𝑓, 𝜕𝜑⟩ = 0 for every infinitely differentiable, com-
pactly supported function 𝜑, so ⟨𝜕

∗
𝑓, 𝜑⟩ = 0, and therefore 𝜕

∗
𝑓 = 0). Consequently, 𝑢 is in

the domain of the adjoint of 𝜕
∗
, hence in the domain of 𝜕, and ⟨𝑓, 𝜕𝑢⟩ = ⟨𝑓, 𝑔⟩ for every 𝑓 in

the domain of 𝜕
∗
. The domain of 𝜕

∗
is dense, so 𝜕𝑢 = 𝑔.

Thus the basic estimate implies the existence of a solution of the 𝜕-equation in 𝐿2(𝐺).
Why is the solution 𝑢 infinitely differentiable in 𝐺 when 𝑔 has coefficients that are infinitely
differentiable functions in 𝐺? For each index 𝑗, the function 𝜕𝑢∕𝜕𝑧𝑗 is a component of 𝑔 and
hence is infinitely differentiable. The question, then, is whether the distributional derivative
𝜕|𝛽|𝑢∕𝜕𝑧𝛽 exists as a continuous function for everymulti-index 𝛽. In view of Sobolev’s lemma
(or the Sobolev embedding theorem) from functional analysis, what needs to be shown is
that such derivatives of 𝑢 are locally square-integrable. An equivalent problem is to show
that for every infinitely differentiable, real-valued function 𝜑 having compact support in 𝐺,
the integral

∫
𝐺
𝜑𝜕

|𝛽|𝑢
𝜕𝑧𝛽

𝜕|𝛽|𝑢
𝜕𝑧𝛽

𝑑𝑉

is finite. Integrating all the derivatives by parts results in a sum of integrals involving only
barred derivatives of 𝑢, and these derivatives are already known to be smooth functions (and
hence locally square-integrable). Thus all derivatives of 𝑢 are square-integrable on compact
subsets of 𝐺, and the solution 𝑢 is infinitely differentiable in 𝐺 when 𝑔 is. (The catchphrase
here from the theory of partial differential equations is “interior elliptic regularity.”)
The much more difficult question of whether the derivatives of the solution 𝑢 extend

smoothly to the boundary of the domain 𝐺 when 𝑔 has this property is beyond the scope
of these notes. This question of boundary regularity is the subject of current research, and
the situation is not completely understood.

Proof of the basic estimate

The cognoscenti sometimes describe the proof of the basic estimate as “an exercise in inte-
gration by parts.” This characterization becomes less of an exaggeration if you admit Stokes’s
theorem as an instance of integration by parts.
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The plan is to work on the right-hand side of the basic estimate, assuming that the dif-
ferential forms have coefficients that are sufficiently smooth functions on the closure of 𝐺.
There is a technical point that needs attention here: namely, to prove that reasonably smooth
forms are dense in the intersection of the domains of 𝜕 and 𝜕

∗
. That the necessary density

does hold is a special case of the so-called Friedrichs lemma, a general construction of Kurt
Friedrichs.29
Suppose, then, that 𝑓 =

∑𝑛
𝑗=1 𝑓𝑗 𝑑𝑧𝑗, and each 𝑓𝑗 is a smooth function on the closure of 𝐺.

Since

|𝜕𝑓|2 =
∑

1≤𝑗<𝑘≤𝑛

|||||||||

𝜕𝑓𝑗
𝜕𝑧𝑘

−
𝜕𝑓𝑘
𝜕𝑧𝑗

|||||||||

2

= 1
2

𝑛∑

𝑗=1

𝑛∑

𝑘=1

|||||||||

𝜕𝑓𝑗
𝜕𝑧𝑘

−
𝜕𝑓𝑘
𝜕𝑧𝑗

|||||||||

2

=
𝑛∑

𝑗=1

𝑛∑

𝑘=1

⎛
⎜
⎝

||||||||

𝜕𝑓𝑗
𝜕𝑧𝑘

||||||||

2

−
𝜕𝑓𝑗
𝜕𝑧𝑘

𝜕𝑓𝑘
𝜕𝑧𝑗

⎞
⎟
⎠
,

integrating over 𝐺 shows that

‖𝜕𝑓‖2 =
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺
(
||||||||

𝜕𝑓𝑗
𝜕𝑧𝑘

||||||||

2

−
𝜕𝑓𝑗
𝜕𝑧𝑘

𝜕𝑓𝑘
𝜕𝑧𝑗

)𝑑𝑉. (3.3)

To analyze ‖𝜕
∗
𝑓‖ requires a formula for 𝜕

∗
𝑓. If 𝑢 is a smooth function on the closure of 𝐺,

and 𝜌 is a defining function for 𝐺 normalized such that |∇𝜌| = 1 on the boundary of 𝐺, then

⟨𝜕
∗
𝑓, 𝑢⟩ = ⟨𝑓, 𝜕𝑢⟩ = ∫

𝐺

𝑛∑

𝑗=1
𝑓𝑗
𝜕𝑢
𝜕𝑧𝑗

𝑑𝑉

= ∫
𝐺

𝑛∑

𝑗=1
−
𝜕𝑓𝑗
𝜕𝑧𝑗

𝑢 𝑑𝑉 + ∫
𝑏𝐺

𝑛∑

𝑗=1
𝑓𝑗
𝜕𝜌
𝜕𝑧𝑗

𝑢 𝑑𝑆,

where 𝑑𝑆 denotes (2𝑛− 1)-dimensional Lebesgue measure on the boundary of 𝐺. Since 𝑢 is
arbitrary, the (0, 1)-form 𝑓 is in the domain of 𝜕

∗
if and only if

𝑛∑

𝑗=1
𝑓𝑗
𝜕𝜌
𝜕𝑧𝑗

= 0 on the boundary of 𝐺, (3.4)

and then 𝜕
∗
𝑓 = −

∑𝑛
𝑗=1 𝜕𝑓𝑗∕𝜕𝑧𝑗.

Now integrate by parts:

‖𝜕
∗
𝑓‖2 =

𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕𝑓𝑗
𝜕𝑧𝑗

𝜕𝑓𝑘
𝜕𝑧𝑘

𝑑𝑉 = −
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕2𝑓𝑗
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑘 𝑑𝑉,

29K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Transactions of the
American Mathematical Society 55, number 1, (1944) 132–151.
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where the boundary term vanishes because 𝑓 satisfies the boundary condition (3.4) formem-
bership in the domain of 𝜕

∗
. Integrating by parts a second time shows that

‖𝜕
∗
𝑓‖2 =

𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕𝑓𝑗
𝜕𝑧𝑘

𝜕𝑓𝑘
𝜕𝑧𝑗

𝑑𝑉 −
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝑏𝐺

𝜕𝑓𝑗
𝜕𝑧𝑘

𝑓𝑘
𝜕𝜌
𝜕𝑧𝑗

𝑑𝑆.

The boundary condition (3.4) implies that the differential operator
∑𝑛

𝑘=1(𝑓𝑘)(𝜕∕𝜕𝑧𝑘) is a tan-
gential differential operator, so applying this operator to (3.4) shows that on the boundary,

0 =
𝑛∑

𝑘=1
𝑓𝑘

𝜕
𝜕𝑧𝑘

(
𝑛∑

𝑗=1
𝑓𝑗
𝜕𝜌
𝜕𝑧𝑗

) =
𝑛∑

𝑗=1

𝑛∑

𝑘=1

(𝑓𝑘
𝜕𝑓𝑗
𝜕𝑧𝑘

𝜕𝜌
𝜕𝑧𝑗

+ 𝑓𝑗𝑓𝑘
𝜕2𝜌

𝜕𝑧𝑗𝜕𝑧𝑘
).

Combining this identity with the preceding equation shows that

‖𝜕
∗
𝑓‖2 =

𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕𝑓𝑗
𝜕𝑧𝑘

𝜕𝑓𝑘
𝜕𝑧𝑗

𝑑𝑉 +
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝑏𝐺

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑗𝑓𝑘 𝑑𝑆

≥
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕𝑓𝑗
𝜕𝑧𝑘

𝜕𝑓𝑘
𝜕𝑧𝑗

𝑑𝑉,

(3.5)

where the final inequality uses for the first (and only) time that the domain 𝐺 is pseudocon-
vex (which implies nonnegativity of the boundary term).
Combining (3.3) and (3.5) shows that

‖𝜕𝑓‖2 + ‖𝜕
∗
𝑓‖2 ≥

𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

||||||||

𝜕𝑓𝑗
𝜕𝑧𝑘

||||||||

2

𝑑𝑉.

Actually, the preceding inequality is not the one that is needed, but if you followed the calcu-
lation, then you should be able to keep track of some extra terms in the integrations by parts
to solve the following exercise.
Exercise 38. If 𝑎 is an infinitely differentiable positive weight function, then

∫
𝐺
(|𝜕𝑓|2 + |𝜕

∗
𝑓|2) 𝑎 𝑑𝑉 =

𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

||||||||

𝜕𝑓𝑗
𝜕𝑧𝑘

||||||||

2

𝑎 𝑑𝑉 + ∫
𝑏𝐺

𝜕2𝜌
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑗𝑓𝑘 𝑎 𝑑𝑆

−
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕2𝑎
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑗𝑓𝑘 𝑑𝑉 + 2Re
⟨ 𝑛∑

𝑘=1
𝑓𝑘

𝜕𝑎
𝜕𝑧𝑘

, 𝜕
∗
𝑓
⟩

≥ −
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕2𝑎
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑗𝑓𝑘 𝑑𝑉 + 2Re
⟨ 𝑛∑

𝑘=1
𝑓𝑘

𝜕𝑎
𝜕𝑧𝑘

, 𝜕
∗
𝑓
⟩
.
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In the preceding exercise, replace the positive weight function 𝑎 by 1 − 𝑒𝑏, where 𝑏 is a
smooth negative function. Then

𝜕2𝑎
𝜕𝑧𝑗𝜕𝑧𝑘

= −𝑒𝑏 𝜕2𝑏
𝜕𝑧𝑗𝜕𝑧𝑘

− 𝑒𝑏 𝜕𝑏
𝜕𝑧𝑗

𝜕𝑏
𝜕𝑧𝑘

,

so it follows that

∫
𝐺
(|𝜕𝑓|2 + |𝜕

∗
𝑓|2) 𝑎 𝑑𝑉

≥
𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕2𝑏
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑗𝑓𝑘 𝑒
𝑏 𝑑𝑉 + ∫

𝐺

|||||||

𝑛∑

𝑘=1

𝜕𝑏
𝜕𝑧𝑘

𝑓𝑘
|||||||

2

𝑒𝑏 𝑑𝑉 − 2Re
⟨ 𝑛∑

𝑘=1
𝑓𝑘

𝜕𝑏
𝜕𝑧𝑘

𝑒𝑏∕2, 𝑒𝑏∕2 𝜕
∗
𝑓
⟩
.

Applying the Cauchy-Schwarz inequality to the last term on the right-hand side and using
that 𝑎 + 𝑒𝑏 = 1 shows that

‖𝜕
∗
𝑓‖2 + ‖𝜕𝑓‖2 ≥ ∫

𝐺
|𝜕

∗
𝑓|2 + 𝑎|𝜕𝑓|2 𝑑𝑉 ≥

𝑛∑

𝑗=1

𝑛∑

𝑘=1

∫
𝐺

𝜕2𝑏
𝜕𝑧𝑗𝜕𝑧𝑘

𝑓𝑗𝑓𝑘𝑒
𝑏 𝑑𝑉.

Now choose a point 𝑝 in 𝐺, let 𝛿 denote the diameter of 𝐺, and set the negative function 𝑏
equal to −1 + |𝑧 − 𝑝|2∕𝛿2. The preceding inequality then implies that

‖𝜕𝑓‖2 + ‖𝜕
∗
𝑓|2 ≥ ‖𝑓‖2∕(𝛿2𝑒).

Thus the basic estimate (3.2) holds with the constant 𝐶 equal to 𝑒 times the square of the
diameter of the domain 𝐺.
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4 Holomorphic mappings
Conformal mapping is a key topic in the theory of holomorphic functions of one complex
variable. As already observed, holomorphic mappings of more variables—indeed, even lin-
ear mappings—rarely preserve angles. This chapter explores some new phenomena that
arise in the study of multidimensional holomorphic mappings.

4.1 Fatou–Bieberbach domains
In one variable, there are few biholomorphisms (bijective holomorphic mappings) of the
whole plane. All suchmappings arise by composing rotations, dilations, and translations. In
other words, the group of holomorphic automorphisms of the plane consists of those func-
tions that transform 𝑧 into 𝑎𝑧 + 𝑏, where 𝑏 is an arbitrary complex number and 𝑎 is an
arbitrary nonzero complex number.
When 𝑛 ≥ 2, there is a huge group of automorphisms of ℂ𝑛. Indeed, if 𝑓 is an arbitrary

holomorphic function of one complex variable, then the mapping that sends a point (𝑧1, 𝑧2)
ofℂ2 to the image point (𝑧1+𝑓(𝑧2), 𝑧2) is an automorphism ofℂ2. (The coordinate functions
evidently are holomorphic, and themapping that sends (𝑧1, 𝑧2) to (𝑧1−𝑓(𝑧2), 𝑧2) is the inverse
transformation.) An automorphism of this special type is called a shear.1
The vastness of the group of automorphisms of ℂ𝑛 when 𝑛 ≥ 2 can be viewed as an ex-

planation of the following surprising phenomenon. When 𝑛 ≥ 2, there exist biholomorphic
mappings from the whole of ℂ𝑛 onto a proper subset of ℂ𝑛. Such mappings are known as
Fatou–Bieberbach mappings.
In 1922, Fatou gave an example2 of a nondegenerate entire mapping of ℂ2 whose range

is not dense in ℂ2. In a footnote, Fatou pointed out that Poincaré had already projected the
existence of such mappings, but without offering an example.3 Bieberbach gave the first
injective example.4

1The terminology is due to Jean-Pierre Rosay andWalter Rudin, Holomorphic maps from ℂ𝑛 to ℂ𝑛, Transac-
tions of the American Mathematical Society 310 (1988), number 1, 47–86.

2P. Fatou, Sur certaines fonctions uniformes de deux variables, Comptes rendus hebdomadaires des séances de
l’Académie des sciences 175 (1922) 1030–1033.

3H. Poincaré, Sur une classe nouvelle de transcendants uniformes, Journal de mathématiques pures et ap-
pliquées (4) 6 (1890) 313–365.

4L. Bieberbach, Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte
volumtreue Abbildung des 𝑅4 auf einen Teil seiner selbst vermitteln, Sitzungsberichte Preussische Akademie
der Wissenschaften (1933) 476–479.
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4 Holomorphic mappings

4.1.1 Example
The following construction, based on an example in the cited paper of Rosay and Rudin,
provides a concrete example of a proper subset of ℂ2 that is biholomorphically equivalent
to ℂ2. This Fatou–Bieberbach domain arises as the basin of attraction of an attracting fixed
point of an automorphism of ℂ2.
The starting point is a particular auxiliary polynomial mapping 𝐹: namely,

𝐹(𝑧1, 𝑧2) =
1
2
(
𝑧2, 𝑧1 + 𝑧22

)
.

Obtained by composing a shear, a transposition of variables, and a dilation by a factor of 1∕2,
the mapping 𝐹 evidently is an automorphism of ℂ2. Moreover, the inverse mapping is easy
to compute:

𝐹−1(𝑧1, 𝑧2) = 2
(
𝑧2 − 2𝑧21, 𝑧1

)
.

Exercise 39. The origin is a fixed point of 𝐹. Show that 𝐹 has exactly one other fixed point.
The complex Jacobian matrix of 𝐹 equals

1
2 (

0 1
1 2𝑧2

) ,

so the Jacobian determinant is identically equal to the constant value −1∕4. At the origin,
the linear approximation of 𝐹 corresponds to a transposition of variables composed with a
dilation by a factor of 1∕2, so the origin is an attracting fixed point of 𝐹.
The rate of attraction can be quantified as follows. When 𝑧 = (𝑧1, 𝑧2), let ‖𝑧‖∞ denote

max{|𝑧1|, |𝑧2|}, the maximum norm on ℂ2. The unit bidisc is the “unit ball” with respect to
this norm. The second component of 𝐹(𝑧) admits the following estimate:

|||||
1

2
(𝑧1 + 𝑧22)

||||| ≤ ‖𝑧‖∞ ⋅
1 + ‖𝑧‖∞

2 .

Since the first component of 𝐹(𝑧) admits an even better estimate, the mapping 𝐹 is a con-
traction on the unit bidisc: namely, if 0 < ‖𝑧‖∞ < 1, then ‖𝐹(𝑧)‖∞ < ‖𝑧‖∞. The contraction
is strict on smaller bidiscs. For instance,

‖𝐹(𝑧)‖∞ ≤ 2
3‖𝑧‖∞ when ‖𝑧‖∞ ≤ 1

3 . (4.1)

In summary, if 𝐹[𝑘] denotes 𝐹◦⋯◦𝐹
⏟⎴⏟⎴⏟

𝑘 times

, the 𝑘th iterate of 𝐹, then

lim
𝑘→∞

𝐹[𝑘](𝑧) = 0 when ‖𝑧‖∞ < 1.

Thus the open unit bidisc 𝐷 lies inside the basin of attraction of the fixed point 0.
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4 Holomorphic mappings

Moreover, every point that is attracted to the origin under iteration of the mapping 𝐹 has
the property that some iterate of 𝐹 maps the point to an image point inside 𝐷. Accordingly,
the basin of attraction of the origin is precisely the union

∞⋃

𝑘=0

𝐹[−𝑘](𝐷),

where 𝐹[−𝑘] denotes the 𝑘th iterate of the inverse transformation 𝐹−1, and 𝐹[0] means the
identity transformation. Since 𝐹−1 is an open map, the basin of attraction is an open set.
Exercise 40. Show that the basin of attraction is a connected set.
Letℬ denote this basin of attraction. The indicated representation of the basin reveals that

the automorphism𝐹 ofℂ2mapsℬ onto itself. In otherwords, not only is𝐹 an automorphism
of ℂ2, but the restriction of 𝐹 to ℬ is an automorphism of ℬ.
The basinℬ does not contain the second fixed point of 𝐹 and so is not all ofℂ2. Moreover,

the complement ofℬ is sizeable: the complement contains the set { (𝑧1, 𝑧2) ∶ |𝑧2| ≥ 3+|𝑧1| },
for the following reason. This set is disjoint from the unit bidisc, so if it can be shown that
this set is mapped into itself by 𝐹, then no point of the set is attracted to the origin. What
needs to be shown, then, is that if |𝑧2| ≥ 3+ |𝑧1|, then |

1

2
𝑧1+

1

2
𝑧22| ≥ 3+ 1

2
|𝑧2|, or equivalently,

|𝑧1 + 𝑧22| ≥ 6 + |𝑧2|. The assumption that |𝑧2| ≥ 3 + |𝑧1| implies, in particular, that |𝑧2| ≥ 3
and 2|𝑧2| ≥ 3 + |𝑧2|, so

|𝑧1 + 𝑧22| ≥ |𝑧2|2 − |𝑧1| ≥ |𝑧2|2 + 3 − |𝑧2| ≥ 3|𝑧2| + 3 − |𝑧2| ≥ 6 + |𝑧2|,

as claimed. Thus the basinℬ is an open subset ofℂ2whose complement contains a nontrivial
open set: namely, the set { (𝑧1, 𝑧2) ∶ |𝑧2| > 3 + |𝑧1| }.
Although the indicated set in the complement of ℬ is multicircular, the basin ℬ itself is

not a Reinhardt domain. For example, the point (4, 2𝑖) belongs to ℬ [since 𝐹(4, 2𝑖) = (𝑖, 0),
and 𝐹[2](4, 2𝑖) = (0, 𝑖∕2), which is a point in the interior of the unit bidisc, hence belongs
to ℬ], but the point (4, 2) does not belong to ℬ [since 𝐹(4, 2) = (1, 4), and this point belongs
to the set considered in the preceding paragraph that lies in the complement of ℬ].
Notice too that ℬ is identical to the basin of attraction of the origin for the mapping 𝐹[2].

Indeed, the iterates of 𝐹 eventually map a specified point into the unit bidisc if and only if
the iterates of 𝐹[2] do. Let Φ denote 𝐹[2]. A routine computation shows that

4Φ(𝑧) = 𝑧 + (𝑧22,
1

2
𝑧21 + 𝑧1𝑧22 +

1

2
𝑧42),

where 𝑧 = (𝑧1, 𝑧2). In particular,

if ‖𝑧‖∞ ≤ 1 then ‖4Φ(𝑧) − 𝑧‖∞ ≤ 2‖𝑧‖2∞. (4.2)

The claim now is thatℬ, a proper subdomain ofℂ2, is biholomorphically equivalent toℂ2;
that is, this basin of attraction is a Fatou–Bieberbach domain. More precisely, the claim is

88
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that when 𝑗 → ∞, the mapping 4𝑗Φ[𝑗] converges uniformly on compact subsets of ℬ to a
biholomorphic mapping from ℬ onto ℂ2.
The immediate goal is to show that the sequence {4𝑗Φ[𝑗]} is a Cauchy sequence, uniformly

on an arbitrary compact subset of ℬ. The strategy is to prove that consecutive terms of this
sequence get exponentially close together.
Fix a compact subset of ℬ and a natural number 𝑁 such that the iterate Φ[𝑁] maps the

specified compact set into the bidisc of radius 1∕3. If 𝑘 is a positive integer, and 𝑧 lies in the
specified compact set, then

‖‖‖‖4
𝑁+𝑘+1Φ[𝑁+𝑘+1](𝑧) − 4𝑁+𝑘Φ[𝑁+𝑘](𝑧)‖‖‖‖∞ = 4𝑁+𝑘 ‖‖‖‖4Φ

(
Φ[𝑁+𝑘](𝑧)

)
− Φ[𝑁+𝑘](𝑧)‖‖‖‖∞

≤ 4𝑁+𝑘 ⋅ 2 ⋅ ‖Φ[𝑁+𝑘](𝑧)‖2∞ by (4.2)

≤ 4𝑁+𝑘 ⋅ 2 ⋅ (
( 2
3

)2𝑘
⋅ 1
3
)
2

by (4.1)

= 22𝑁+1
9 ⋅ (89)

2𝑘

.

This geometric decay implies that the sequence {4𝑗Φ[𝑗]} is indeed a Cauchy sequence (uni-
formly on every compact subset ofℬ). Accordingly, a holomorphic limit mapping 𝐺 appears
that maps ℬ into ℂ2.
What remains to show is that 𝐺 is both injective and surjective. Since the Jacobian deter-

minant of 𝐹 is identically equal to −1∕4, the Jacobian determinant of Φ is identically equal
to 1∕16, the Jacobian determinant of 4Φ is identically equal to 1, and the Jacobian determi-
nant of 4𝑗Φ𝑗 is identically equal to 1 for every 𝑗. Hence the Jacobian determinant of 𝐺 is
identically equal to 1. Therefore the holomorphic mapping 𝐺 is at least locally injective.
Exercise 41. Show that if a normal limit of injective holomorphic mappings (from a neigh-
borhood in ℂ𝑛 into ℂ𝑛) is locally injective, then the limit is globally injective.
The surjectivity of 𝐺 follows from the observation that 4𝐺◦Φ = 𝐺 (which is true because

both sides of this equation represent the limit of the sequence {4𝑗Φ[𝑗]}). SinceΦ is a bijection
of the basin ℬ, the range of 𝐺 is equal to the range of 4𝐺. But the range of 𝐺 contains a
neighborhood of the origin in ℂ2, and the only neighborhood of the origin that is invariant
under dilation by a factor of 4 is the whole space.
Thus 𝐺 is a holomorphic bijection from the basin ℬ onto ℂ2. Accordingly, the basin ℬ is

a Fatou–Bieberbach domain, as claimed.

4.1.2 Theorem
The general result of which the preceding example is a special case states that if 𝐹 is an
arbitrary automorphism of ℂ𝑛 with an attracting fixed point at the origin (meaning that ev-
ery eigenvalue of the Jacobian matrix at the origin has absolute value less than 1), then the
basin of attraction of the fixed point is biholomorphically equivalent to ℂ𝑛. Of course, the

89
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basin might be all of ℂ𝑛, but if the basin is a proper subset of ℂ𝑛, then the basin is a Fatou–
Bieberbach domain. The appendix of the cited paper of Rosay and Rudin (pages 80–85) pro-
vides a proof of the theorem.
Research on Fatou–Bieberbach domains continues. One result from the twenty-first cen-

tury is the existence of Fatou–Bieberbach domains that do not arise as the basin of attraction
of an automorphism.5

4.2 Inequivalence of the ball and the bidisc
The Riemannmapping theorem implies that every bounded, simply connected domain inℂ1

can be mapped biholomorphically to the unit disc. In higher dimension, there is no such
topological characterization of biholomorphic equivalence. Indeed, the open unit ball in ℂ2

is not biholomorphically equivalent to the bidisc even though these two sets, viewed as sub-
domains of ℝ4, are topologically (even diffeomorphically) equivalent.
The usual shorthand for this observation is that “there is no Riemann mapping theorem

in higher dimension.” But the story has another chapter. If a bounded, simply connected
domain in ℂ𝑛 has connected, smooth boundary that is spherical (locally biholomorphically
equivalent to a piece of the boundary of a ball), then indeed the domain is biholomorphically
equivalent to a ball.6
The proof of the positive result is beyond the scope of this document. But the proof of the

inequivalence of the ball and the bidisc is relatively easy. Here is one argument, based on the
intuitive idea that the boundary of the bidisc contains one-dimensional complex discs, but
the boundary of the ball does not. (Since holomorphic maps live on open sets and do not a
priori extend to the boundary, a bit of trickery is needed to turn this intuition into a proof.)
Seeking a contradiction, suppose that there does exist a biholomorphic mapping from the

unit bidisc to the unit ball. Let {𝑎𝑗} be an arbitrary sequence of points in the unit disc tend-
ing to the boundary, and consider the restriction of the alleged biholomorphic map to the
sequence of one-dimensional discs { (𝑎𝑗, 𝑧2) ∶ |𝑧2| < 1 }. The sequence of restrictions is
a normal family (since the image is bounded), so there is a subsequence converging nor-
mally to a limit mapping from the unit disc into the boundary of the ball. Projecting onto a
one-dimensional complex subspace through a point in the image produces a holomorphic
function that realizes its maximum absolute value at an interior point of the unit disc, so the
maximum principle implies that the limit mapping is constant.
Consequently, the 𝑧2-derivative of each component of the original biholomorphic map-

ping tends to zero along the sequence of discs. For every point 𝑏 in the unit disc, then, the
𝑧2-derivative of each component of the mapping tends to zero along the sequence {(𝑎𝑗, 𝑏)}.
The sequence {𝑎𝑗} is arbitrary, and a holomorphic function in the unit disc that tends to zero

5Erlend Fornæss Wold, Fatou–Bieberbach domains, International Journal of Mathematics 16 (2005), num-
ber 10, 1119–1130.

6Shanyu Ji and Shiing-Shen Chern, On the Riemannmapping theorem,Annals ofMathematics (2) 144 (1996),
number 2, 421–439.
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4 Holomorphic mappings

along every sequence approaching the boundary reduces to the identically zero function.
Thus the 𝑧2-derivative of each component of the mapping is identically equal to zero in the
whole bidisc. The same conclusion holds by symmetry for the 𝑧1-derivative, so both compo-
nents of the mapping reduce to constants. This conclusion contradicts the assumption that
the mapping is biholomorphic. The contradiction shows that no biholomorphism from the
bidisc to the ball can exist.
Many authors attribute to Henri Poincaré (1854–1912) the proposition that the ball and

the bidisc are holomorphically inequivalent. Although Poincaré wrote an influential paper7
about the holomorphic equivalence problem, there is no explicit statement of the proposi-
tion in the paper. Poincaré did compute the group of holomorphic automorphisms of the
ball in ℂ2. The automorphism group of the bidisc is easy to determine (the group is gen-
erated by Möbius transformations in each variable separately together with transposition
of the variables) and is clearly not isomorphic to the automorphism group of the ball, so a
straightforward deduction from Poincaré’s paper does yield the proposition.

4.3 Injectivity and the Jacobian
A fundamental proposition from real calculus states that if a (continuously differentiable)
mapping from a domain in ℝ𝑁 into ℝ𝑁 has Jacobian determinant different from zero at a
point, then the mapping is injective in a neighborhood of the point. (Indeed, the mapping is
a local diffeomorphism.) If a holomorphicmapping fromadomain inℂ𝑛 intoℂ𝑛 has complex
Jacobian determinant different from zero at a point, is the mapping necessarily injective in a
neighborhood of the point? An affirmative answer follows immediately from the following
exercise.
Exercise 42. A holomorphic mapping from ℂ𝑛 to ℂ𝑛 induces a real transformation from ℝ2𝑛

to ℝ2𝑛 (through suppression of the complex structure). Show that the determinant of the
2𝑛 × 2𝑛 real Jacobian matrix equals the square of the absolute value of the determinant of
the 𝑛 × 𝑛 complex Jacobian matrix.
Hint: When 𝑛 = 1, writing a holomorphic function 𝑓(𝑧) as 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) and applying
the Cauchy–Riemann equations shows that

|𝑓′|2 = 𝑢2𝑥 + 𝑣2𝑥 = det
⎛
⎜
⎜
⎝

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

⎞
⎟
⎟
⎠

.

Can you generalize to higher dimension?
(Moreover, when the complex Jacobian determinant is nonzero, the mapping is a local

biholomorphism. Indeed, the chain rule implies that the first-order real partial derivatives
of the inverse mapping satisfy the Cauchy–Riemann equations.)
7Henri Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rendiconti del
Circolo Matematico di Palermo 23 (1907) 185–220.
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In real calculus, the Jacobian determinant of an injectivemapping can have zeros. Indeed,
the function of one real variable that sends 𝑥 to 𝑥3 is injective but has derivative equal to zero
at the origin. The story changes for holomorphic mappings.
A standard property from the theory of functions of one complex variable states that a holo-

morphic function is locally injective in a neighborhood of a point if and only if the derivative
is nonzero at the point. A corresponding statement holds in higher dimension but is not
obvious. The goal of this section is to provide a proof that a locally injective holomorphic
mapping from a domain in ℂ𝑛 into ℂ𝑛 has nonzero Jacobian determinant.
This theorem appeared in the 1913 PhD dissertation of Guy Roger Clements (1885–1956)

at Harvard University. An announcement8 appeared in 1912 with the details published9 the
following year. When I was a graduate student, an elegant short proof appeared in the now
standard textbook on algebraic geometry by Griffiths and Harris.10 The idea was rediscov-
ered by Rosay11 and embellished by Range.12 The proof below is my implementation of the
method.
Exercise 43. The story changes when the dimension of the domain does not match the di-
mension of the range. Find an example of an injective holomorphic mapping from ℂ1 to ℂ2

whose derivative vanishes at the origin. What about mappings from ℂ2 to ℂ1?
The proof of the proposition is straightforward for readers who know the concept of a

variety. The goal of the following lemma is to provide an “elementary” and self-contained
proof that avoids explicit mention of varieties.
Lemma 7. Suppose𝑓 is a holomorphic function defined on a neighborhood of a point𝑝 inℂ𝑛,
where 𝑛 ≥ 2, and 𝑓(𝑝) = 0.

1. If the gradient of 𝑓 at 𝑝 is not the zero vector, then there is a local biholomorphic
change of coordinates near 𝑝 after which 𝑝 becomes the origin and the zero set of 𝑓
becomes the subspace ℂ𝑛−1 × {0} in a neighborhood of the origin.

2. If the gradient of 𝑓 at 𝑝 is the zero vector, but the function 𝑓 is not identically equal
to 0 in a neighborhood of 𝑝, then there is a nearby point 𝑞 and a local biholomorphic
change of coordinates near 𝑞 after which 𝑞 becomes the origin and the zero set of 𝑓
becomes the subspace ℂ𝑛−1 × {0} in a neighborhood of the origin.

8G. R. Clements, Implicit functions defined by equations with vanishing Jacobian, Bulletin of the American
Mathematical Society 18 (1912) 451–456.

9Guy Roger Clements, Implicit functions defined by equations with vanishing Jacobian, Transactions of the
American Mathematical Society, 14 (1913) 325–342.

10Phillip Griffiths and JosephHarris, Principles of Algebraic Geometry, Wiley, 1978, pages 19–20. The book was
reprinted in 1994.

11Jean-Pierre Rosay, Injective holomorphic mappings, American Mathematical Monthly 89 (1982), number 8,
587–588.

12R. Michael Range, Holomorphic Functions and Integral Representations in Several Complex Variables,
Springer, 1986, Chapter I, Section 2.8.
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4 Holomorphic mappings

Proof. Readers who already know the basic notions of analytic varieties can view the zero set
of 𝑓 as an (𝑛− 1)-dimensional variety. The first statement says that the point 𝑝 is nonsingu-
lar, so the variety can be straightened locally by a holomorphic change of coordinates. The
second statement follows by taking 𝑞 to be a regular point of the variety close to 𝑝. Readers
unfamiliar with the technology of varieties can proceed as follows.
To prove the first statement, start by translating𝑝 to 0, and then permute the coordinates to

arrange that 𝜕𝑓∕𝜕𝑧𝑛(0) ≠ 0. Now consider the map sending a general point (𝑧1,… , 𝑧𝑛) to the
image point (𝑧1,… , 𝑧𝑛−1, 𝑓(𝑧1,… , 𝑧𝑛)). The Jacobian determinant of this mapping equals the
nonzero value 𝜕𝑓∕𝜕𝑧𝑛(0), so the transformation has a local holomorphic inverse 𝐺 near the
origin. Since 𝑓◦𝐺 vanishes precisely when the 𝑛th coordinate is equal to 0, the mapping 𝐺
provides the required change of coordinates. (This argument essentially says that 𝑓 itself can
be chosen as one of the 𝑛 local complex coordinates.)
The second statement of the lemma follows from the first statement whenever there is

a nearby point 𝑞 such that 𝑞 lies in the zero set of 𝑓 and the gradient of 𝑓 at 𝑞 is not the
zero vector. In general, however, such a point 𝑞 need not exist, for 𝑓 might be the square of
another holomorphic function, in which case the gradient of 𝑓 vanishes wherever 𝑓 does. To
handle this situation, fix a neighborhood of𝑝 (as small as desired) and observe that (since𝑓 is
not identically equal to zero) there is a minimal natural number 𝑘 such that all derivatives
of 𝑓 of order 𝑘 or less vanish identically on the zero set of 𝑓 in the specified neighborhood,
but some derivative of 𝑓 of order 𝑘 + 1 is nonzero at some point 𝑞 in the zero set of 𝑓 in the
neighborhood. Apply the first case of the lemma to the appropriate 𝑘th-order derivative of 𝑓
whose gradient is not zero.
After a suitable holomorphic change of coordinates, the point 𝑞 becomes the origin, and

the zero set of the specified 𝑘th-order derivative of 𝑓 becomes the subspace ℂ𝑛−1 × {0} in a
neighborhood of the origin inℂ𝑛, say in a polydisc of radius 𝜀 centered at 0. By construction,
the zero set of 𝑓 in the polydisc is a nonvoid subset of the subspace ℂ𝑛−1 × {0}. It remains to
show that the zero set of 𝑓 is identical to this subspace in some neighborhood of the origin.
In the contrary case, the closedness of the zero set of 𝑓 implies the existence of an open

polydisc 𝐷 in ℂ𝑛−1 centered at some point 𝑤 of ℂ𝑛−1 × {0} such that max1≤𝑗≤𝑛−1 |𝑤𝑗| < 𝜀∕2
and the zero set of 𝑓 is disjoint from 𝐷. Shrink 𝐷, if necessary, to ensure that 𝐷 is entirely
contained in the polydisc of radius 𝜀∕2 centered at 0. On the Hartogs figure

𝐷 × { 𝑧𝑛 ∈ ℂ ∶ |𝑧𝑛| < 𝜀 }
⋃

{ 𝑧 ∈ ℂ𝑛 ∶ 𝜀∕2 < |𝑧𝑛| < 𝜀 and max
1≤𝑗≤𝑛−1

|𝑧𝑗 − 𝑤𝑗| < 𝜀∕2 },

the function 𝑓 is holomorphic and nowhere equal to 0, so the function 1∕𝑓 is holomorphic.
By the Hartogs phenomenon, the function 1∕𝑓 extends to be holomorphic on the polydisc

{ (𝑧1,… , 𝑧𝑛−1) ∶ max
1≤𝑗≤𝑛−1

|𝑧𝑗 − 𝑤𝑗| < 𝜀∕2 } × { 𝑧𝑛 ∶ |𝑧𝑛| < 𝜀 }.

Since this polydisc contains the origin, which lies in the zero set of 𝑓, a contradiction arises.
The contradiction means that the zero set of 𝑓 must be identical to the subspace ℂ𝑛−1 × {0}
in some neighborhood of the origin.
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The proof of the proposition about nonvanishing of the Jacobian determinant of an injec-
tive holomorphicmapping uses induction on the dimension, the one-dimensional case being
known. Suppose, then, that the proposition has been established for dimension 𝑛 − 1, and
consider a local injective holomorphic mapping (𝑓1,… , 𝑓𝑛) that (without loss of generality)
fixes the origin.
If the gradient of the coordinate function 𝑓𝑛 at the origin is nonzero, then the first case of

the lemma reduces the problem (via a local biholomorphic change of coordinates) to the situ-
ation that𝑓𝑛 vanishes precisely on the subspacewhere 𝑧𝑛 = 0. Consequently, 𝜕𝑓𝑛∕𝜕𝑧𝑗(0) = 0
when 𝑗 ≠ 𝑛, and 𝜕𝑓𝑛∕𝜕𝑧𝑛(0) ≠ 0. Moreover, the𝑛-dimensionalmapping now takesℂ𝑛−1×{0}
into itself. The mapping of ℂ𝑛−1 obtained by restricting to the subspace where 𝑧𝑛 = 0 has
nonzero Jacobian determinant at the origin by the induction hypothesis. The Jacobian de-
terminant of the 𝑛-dimensional mapping at the origin equals this nonzero Jacobian determi-
nant of the (𝑛−1)-dimensional mapping multiplied by the nonzero factor 𝜕𝑓𝑛∕𝜕𝑧𝑛(0). Thus
the required conclusion holds when the gradient of 𝑓𝑛 at the origin is nonzero.
Making a permutation of the variables in the range shows, by the same argument, that the

Jacobian determinant of the mapping at the origin is nonzero if any one of the coordinate
functions has nonzero gradient at the origin. Accordingly, the problem reduces to showing
that a contradiction arises if the Jacobian matrix at the origin has all entries equal to zero.
The Jacobian determinant is then a holomorphic function that equals zero at the origin.

Making a suitable holomorphic change of coordinates at a nearby point via the second part
of the lemma reduces to the situation that the zero set of the Jacobian determinant near the
origin is precisely ℂ𝑛−1 × {0}. By the first part of the argument, each coordinate function of
themapping has vanishing gradient on this complex subspace. Consequently, the coordinate
functions are constant along ℂ𝑛−1 × {0}, contradicting the injectivity of the mapping. This
contradiction implies that the Jacobian determinant of the injective holomorphic mapping
cannot vanish after all, thus completing the proof by induction.

4.4 The Jacobian conjecture
The Fatou–Bieberbach example discussed in Section 4.1 is a holomorphic map 𝐺∶ ℂ2 →
ℂ2 whose Jacobian determinant is identically equal to 1 (whence 𝐺 is everywhere locally
invertible), yet𝐺 is not surjective (whence𝐺 is not globally invertible as amap fromℂ2 toℂ2).
The map 𝐺 appears as a normal limit of polynomial maps, but 𝐺 itself is not a polynomial
map. An unresolved problemof long standing is the nonexistence of weird polynomialmaps.

Open Problem (Jacobian conjecture). For every positive integer 𝑛, if 𝐹∶ ℂ𝑛 → ℂ𝑛 is a poly-
nomial mapping whose Jacobian determinant is identically equal to 1, then 𝐹 is a polynomial
automorphism of ℂ𝑛.

The conclusion entails that 𝐹 is both injective and surjective, and the inverse of 𝐹 is a poly-
nomial mapping. It is known that if 𝐹 is globally injective, then the other two conclusions
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follow. The conjecture is known to be true for mappings involving only polynomials of de-
gree at most 2. Moreover, the conjecture holds in general if it holds for mappings involving
only polynomials of degree at most 3. Many alleged proofs of the conjecture have been pub-
lished, none correct (so far). It is unclear whether the conjecture is essentially a problem of
algebra, analysis, combinatorics, or geometry.13
A natural real analogue of the Jacobian conjecture is known to be false. Pinchuk14 pro-

duced a remarkable example of a polynomialmap𝐹∶ ℝ2 → ℝ2whose Jacobian determinant
is everywhere positive, yet 𝐹 is not a global diffeomorphism from ℝ2 onto ℝ2.

13The indicated facts and much more can be found in the following article: Hyman Bass, Edwin H. Connell,
and David Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bul-
letin of the American Mathematical Society 7 (1982), number 2, 287–330.

14Sergey Pinchuk, A counterexample to the strong real Jacobian conjecture, Mathematische Zeitschrift 217
(1994), number 1, 1–4.
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