%% slides for the lecture bergman.tex \documentclass{slides} \usepackage{amsmath,amsthm,graphics} \newtheorem*{theorem}{Theorem} \newcommand{\dbar}{\overline\partial} \begin{document} \large \begin{slide} Cauchy integral for disk \begin{equation*} f(w)=\frac{1}{2\pi i}\int_{|z|=1} \frac{f(z)}{z-w}\,dz \end{equation*} Equivalent form \begin{equation*} f(w)=\frac1\pi \int_{|z|<1} \frac{f(z)}{(1-w\bar z)^2}\,dx\,dy, \end{equation*} Bergman kernel function for disk \begin{equation*} K(w,z)=\frac1{\pi(1-w\bar z)^2} \end{equation*} \end{slide} \begin{slide} Bergman kernel of a domain \begin{equation*} K(w,z)=\sum_j \phi_j(w)\overline\phi_j(z), \end{equation*} where $\{\phi_j\}$ is an orthonormal basis for the square-integrable holomorphic functions. In the class of holomorphic functions~$f$ such that $\displaystyle f(z)\ge\int|f|^2$, the one with the maximal value at~$z$ is $K(w,z)$. \end{slide} \begin{slide} The Riemann map~$f$ is related to the Bergman kernel function~$K$ via \begin{equation*} f'(z)=K(z,a)\sqrt{\frac{\pi}{K(a,a)}}. \end{equation*} The Bergman metric \begin{equation*} g_{jk}(z)=\frac{\partial^2}{\partial z_j\partial \bar z_k} \log K(z,z). \end{equation*} \end{slide} \begin{slide} \begin{center} Bergman Prize winners \end{center} \setlength{\parskip}{5pt} \begin{description} \item [David Catlin] (1989)\\ (\emph{Princeton}, Chicago, \emph{Princeton}, \\ Purdue) \item [Steve Bell and Ewa Ligocka] (1991) \\ (MIT, \emph{Princeton}, Purdue; \\ Warsaw, Polish Acad.\ Sci.) \item [Charles Fefferman] (1992) \\ (\emph{Princeton}, Chicago, \emph{Princeton}) \item [Yum-Tong Siu] (1993) \\ (\emph{Princeton}, Purdue, Notre Dame, Yale, Stanford, Harvard) \item [John Erik Forn{\ae}ss] (1994)\\ (Washington, \emph{Princeton}, Michigan) \end{description} \end{slide} \begin{slide} \begin{center} \large\bfseries Diederich-Forn{\ae}ss worm domain \end{center} \includegraphics[1in,3in][5in,7in]{worm.ps} A smoothly bounded pseudoconvex domain lacking a Stein neighborhood basis. \end{slide} \begin{slide} \begin{theorem}[Fefferman] Let $f:D\to G$ be a biholomorphic mapping between bounded strongly pseudoconvex domains in~$\mathbf{C}^n$ with boundaries of class~$C^\infty$. Then $f$~extends to a diffeomorphism of the closures. \end{theorem} \begin{theorem}[Bell and Ligocka] Let $f:D\to G$ be a biholomorphic mapping between bounded domains in~$\mathbf{C}^n$ with boundaries of class~$C^\infty$, and suppose the Bergman projections preserve the space of functions that are $C^\infty$ on the closure. Then $f$~extends to a diffeomorphism of the closures. \end{theorem} \end{slide} \begin{slide} \begin{theorem}[Catlin] A necessary and sufficient condition for the $\dbar$-Neumann problem to be subelliptic on a (weakly) pseudoconvex domain is that the boundary have bounded order of contact with complex varieties. \end{theorem} \begin{theorem}[Boas and Straube] The Fefferman mapping theorem holds for all (weakly) convex domains. More generally, the $\dbar$-Neumann problem is regular in both $C^\infty$ and each Sobolev space~$W^k$ for domains that are defined by plurisubharmonic functions. \end{theorem} \end{slide} \begin{slide} \begin{theorem}[Michael Christ, 1995] The $\dbar$-Neumann operator and the Bergman projection are not $C^\infty$ globally regular in the Diederich-Forn{\ae}ss worm domain. \end{theorem} \includegraphics[1in,3in][5in,7in]{worm.ps} \end{slide} \begin{slide} We are dealing with a field of applied mathematics where the interaction between mathematics and physics is highly stimulating and fruitful for both sciences. -- Bergman and Schiffer, 1953 %The actual computation of a %complete orthonormal system is a rather time-consuming procedure; %but \ldots\ with the aid of modern computational technique, these processes come well within the range of practical application. -- Bergman, 1950 Punch-card machine methods applied to the solution of the torsion problem, \emph{Quart.\ Appl.\ Math.}\ \textbf{5} (1943), 69--81. \end{slide} \end{document}