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1. INTRODUCTION. Written in block capitals on lined paper, the letter bore a post-
mark from a Northeastern seaport. “I have a problem that I would like to solve,” the
letter began, “but unfortunately I cannot. I dropped out from 2nd year high school,
and this problem is too tough for me.” There followed the diagram shown in Figure 1
along with the statement of the problem: to prove that the line segment DE has the
same length as the line segment AB.

Figure 1. A correspondent’s hand-drawn puzzle.

“I tried this and went even to the library for information about mathematics,” the
letter continued, “but I have not succeeded. Would you be so kind to give me a full
explanation?”

Mindful of the romantic story [20] of G. H. Hardy’s discovery of the Indian genius
Ramanujan, a mathematician who receives such a letter wants first to rule out the re-
mote possibility that the writer is some great unknown talent. Next, the question arises
of whether the correspondent falls into the category of eccentrics whom Underwood
Dudley terms “mathematical cranks” [16], for one ought not to encourage cranks.

Since this letter claimed no great discovery, but rather asked politely for help, I
judged it to come from an enthusiastic mathematical amateur. Rather than file such
letters in the oubliette, or fob them off on junior colleagues, I try to reply in a friendly
way to communications from coherent amateurs. Since mathematics has a poor image
in our society, it seems incumbent on professional mathematicians to seize every op-
portunity to foster good will with the lay public. Moreover, any teacher worth the name
jumps at a chance to enlighten an eager, inquiring mind; besides, a careful investigation
of elementary mathematics can be educational even for the professional.

As Doron Zeilberger and his computer collaborator Shalosh B. Ekhad have shown
[17], the standard theorems of planar geometry can be checked by executing a few
lines of Maple code: typically one merely has to verify the vanishing of a polynomial
in the coordinates of certain points.1 Nonetheless, proving the theorems by hand—
like solving crossword puzzles—is an entertaining pastime for many, including my
high-school-dropout correspondent.

1A similar attempt in 1969 failed for lack of computing power [11].
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Since the letter reached me in the slack period before the start of a semester, I
was able to find time to begin examining the problem, which was new to me. I soon
discovered that the underlying geometric figure has a long history, and learning some
details of that history sent me repeatedly to the interlibrary loan office to puzzle over
publications in half-a-dozen languages. In this article, I reflect on both the mathematics
and the history.

Figure 2. The arbelos.

2. FIRST REFLECTION. The origin of Figure 2, commonly called the arbelos (a
transliteration of the Greek ), is lost in the sands of time. The figure shows
the region bounded by three semicircles, tangent in pairs, with diameters lying on
the same line. The first substantial treatment of the arbelos in modern times (say the
last two hundred years) is part of a famous paper [37] by Jacob Steiner in the first
volume of Crelle’s journal in 1826. The arbelos continues to make occasional ap-
pearances in journal articles (see [15] and its references) and in student theses (for
instance [23], [26], [44]); one of Martin Gardner’s columns in Scientific American dis-
cusses it [19]; Eric W. Weisstein covers it in his MathWorld encyclopedia [43]; and
there is today a web site http://www.arbelos.org/. Yet Victor Thébault’s char-
acterization of the arbelos (half a century ago) as “universally known” seems to be an
exaggeration.2

The fascinating geometric properties of the arbelos range from the elementary to
the abstruse. An elementary first proposition is that the length of the lower boundary
of the arbelos equals the length of the upper boundary. The proof is immediate from
the knowledge that the circumference of a circle is proportional to its diameter; one
does not even need to know that the constant of proportionality is π .

A slightly more sophisticated property (see Figure 3) is that the area of the arbelos
equals the area of the circle whose diameter CD is the portion inside the arbelos of the
common tangent line to the two smaller semicircles at their point C of tangency. This
property of the arbelos is Proposition 4 in the ancient Greek Book of Lemmas (about
which more later).

Figure 3. An area property of the arbelos.

2The abstract of [40] speaks of “cette figure universellement connue.”
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Figure 4. Proof by reflection.

For the proof, reflect in the line through the points A and B (see Figure 4) and
observe that twice the area of the arbelos is what remains when the areas of the two
smaller circles (with diameters AC and CB) are subtracted from the area of the large
circle (with diameter AB). Since the area of a circle is proportional to the square of the
diameter (Euclid’s Elements, Book XII, Proposition 2; we do not need to know that
the constant of proportionality is π/4), the problem reduces to showing that 2(CD)2 =
(AB)

2 − (AC)
2 − (CB)

2. (To indicate the length of a line segment, I enclose the name
of the segment in parentheses.) The length (AB) equals the sum of the lengths (AC)

and (CB), so this equation simplifies algebraically to the statement that (CD)2 =
(AC)(CB). Thus the claim is that the length of the segment CD is the geometric mean
of the lengths of the segments AC and CB. Now (see Figure 5) the triangle ADB, being
inscribed in a semicircle, has a right angle at the point D (Euclid, Book III, Proposition
31), and consequently (CD) is indeed “a mean proportional” between (AC) and (CB)

(Euclid, Book VI, Proposition 8, Porism). This proof approximates the ancient Greek
argument; one may find the idea implemented as a “proof without words” in [28].

Figure 5. A mean proportional. Figure 6. The twin circles.

Proposition 5 of the Book of Lemmas is the more arresting statement that if two
circles are inscribed in the arbelos tangent to the line segment CD, one on each side as
shown in Figure 6, then the two circles are congruent. The proofs that I know proceed
by explicitly computing the diameters of the two circles. I invite the reader to attempt
the computation via Euclidean methods before reading on for a simple modern argu-
ment by reflection.

3. REFLECTION IN A CIRCLE. Speaking at the end of the year 1928, Julian Low-
ell Coolidge said that the “most notable epoch in all the long history of geometry, the
heroic age, was almost exactly a hundred years ago” [12, p. 19]. He cited dramatic
nineteenth-century advances in all sorts of geometry: synthetic, analytic, projective,
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hyperbolic, elliptic, and differential. The heroic geometric development of concern
here, dating from that period, is the method of reflection in a circle, also known as
inversion.

Perhaps the most renowned nineteenth-century user of this tool, who discovered
in the year of his twenty-first birthday how to solve problems in electrostatics via
inversion [42], is William Thomson, subsequently created Baron Kelvin of Largs. The
great geometer Steiner, however, usually gets credit for the method of inversion on the
basis of notes he wrote on the subject in 1824, the year of Thomson’s birth.3

The inverse of a point M with respect to a given circle in the plane is the point W
determined by two conditions: (i) the points M and W lie on the same ray emanating
from the center of the circle, and (ii) the product of the distances of M and W from
the center of the circle equals the square of the radius of the circle. (See Figure 7;
the reason for the labels M and W is that these glyphs of the standard Latin character
set are very nearly reflections of each other.) The points of the circle are fixed under
inversion, and the center of the circle corresponds under inversion to the ideal point at
infinity.

O
r

M

W

Figure 7. Reflection in a circle: (OM)(OW) = r2.

Under inversion in a given circle, both lines and circles behave nicely. For example,
the definition of the inverse point immediately implies that a line through the center of
the circle of inversion inverts into itself (not pointwise, but as a set). Moreover, either
by purely geometric methods or by algebraic calculations, one can show that

• a line not passing through the center of the circle of inversion inverts to a circle;
• a circle not passing through the center of the circle of inversion inverts to a circle;
• a circle passing through the center of the circle of inversion inverts to a line.

The other key property of inversion is anticonformality: the angle at which two
oriented curves intersect has the same magnitude as the angle at which the inverted
curves intersect, but the opposite sense. For example, two rays starting at the center of
the circle of inversion invert into themselves, but with their directions reversed, so the
angle between the rays reverses sense. For another example, consider a circle � that
cuts the circle of inversion at right angles. The inverse of � is another circle that meets
the circle of inversion orthogonally, and at the same points as � does; hence a circle
orthogonal to the circle of inversion inverts into itself.

3Extracts from Steiner’s notes were eventually published in [10], but not until half a century after Steiner’s
death. Priority for the concept of inversion is sometimes claimed on behalf of various other mathematicians
active in the first half of the nineteenth century. Nathan Altshiller Court [13] went so far as to attribute the idea
of inversion to Apollonius of Perga, a contemporary of Archimedes from two millennia earlier!
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Inversion is a standard topic both in textbooks on geometry and in textbooks on
complex analysis, but the word “inversion” has different meanings in the two subjects.
Geometric inversion corresponds to the composition of the complex analytic inversion
z �→ 1/z with complex conjugation z �→ z.

Returning to Figure 6, consider the effect of inverting the diagram with respect to
a circle that is centered at the point A and that orthogonally intersects the left-hand
member—call it �—of the pair of inscribed circles. Then � inverts into itself, and the
horizontal line through A and B inverts into itself. The semicircle with diameter AB
inverts into a portion of a line that is tangent to the circle � and that meets the line
segment AB orthogonally at the point B′ inverse to the point B (see Figure 8). The
semicircle with diameter AC inverts into a portion of a line that is tangent to � and
that meets the line segment AB orthogonally at the point C′ inverse to the point C.
Since � is fixed by inversion, the points C and C′ must be identical, which means that
the point C lies on the circle of inversion. (Also shown in the figure—but not needed in
the argument—are the image D′ of the point D, the circular image of the line segment
CD, and the image of the right-hand twin circle.)

A C=C′B′

D′

Γ

B

Figure 8. Inversion of Figure 6.

Let d1 denote the length of the line segment AC, let d2 denote the length of the
line segment CB, and let d denote the unknown diameter of the circle �. The points
B and B′ are inverse points with respect to the circle with center A and radius d1,
so (d1 − d)(d1 + d2) = d2

1 , which implies that d = d1d2/(d1 + d2). This quantity is
symmetric in d1 and d2, so repeating the argument for inversion with respect to a
suitable circle centered at B will yield the same diameter for the right-hand circle
inscribed in the arbelos. Thus the twin circles are indeed congruent: they have equal
diameters.

4. LOST IN TRANSLATION. Figure 2 appears frequently in the literature on recre-
ational mathematics with a comment to the effect: “The figure was first studied by
Archimedes of Syracuse, who called it the arbelos or shoemaker’s knife.” Such his-
torical statements, unlike mathematical theorems, are only an approximation to an
unknowable truth. The surviving works of Archimedes do not mention the arbelos.
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The source for the claim that Archimedes studied and named the arbelos is the Book
of Lemmas, also known as the Liber assumptorum from the title of the seventeenth-
century Latin translation of the ninth-century Arabic translation of the lost Greek orig-
inal. Although this collection of fifteen propositions is included in standard editions of
the works of Archimedes [1], [2], [3], [4], the editors acknowledge that the author of
the Book of Lemmas was not Archimedes but rather some anonymous later compiler,
who indeed refers to Archimedes in the third person.

Perhaps one day someone will find direct evidence that Archimedes explored the
properties of Figure 2. After all, just a century ago the lost Method of Archimedes
was partially recovered by Johan Ludvig Heiberg from a palimpsest in a library in
Constantinople. After the palimpsest was auctioned in 1998 for two million dollars,
contemporary scholars were allowed access to recover more of the text using modern
technology, thereby gaining new insight into the works of Archimedes (see [29]).

Why is the arbelos called “the shoemaker’s knife”? The oldest extant source for
the Greek word seems to be Nicander’s Theriaca, a work about venomous creatures
that apparently dates from the middle of the second century B.C., about half a century
after the death of Archimedes. What I am able to understand from the obscure poetical
passage is that Nicander knew the arbelos as a tool used by leather-workers to trim
smelly green hides.4 A scholium from an unknown date and hand glosses “arbelos” as
a circular knife used by , a word that literally means “leather-cutters” but
that typically is rendered as “shoemakers.” The ancient use of a knife with a curved
blade in the manufacture of sandals is indeed attested by Egyptian drawings from
3500 years ago [35, p. 18], and a similar tool is still marketed today to leather-crafters
(Figure 9).

Figure 9. A modern round knife.

My view, however, is that “shoemaker’s knife” is a bad translation. Just as most
users of the “Swiss army knife” have no connection with the armed forces of Switzer-
land, most wielders of the arbelos have nothing to do with the making of shoes. D’Arcy
W. Thompson reported more than half a century ago that the round knife was then in
use by saddlers but not by shoemakers [41]. A century before that, Charles Dickens
surely was not thinking of a tool like the one in Figure 9 when he wrote of visiting an
imprisoned thief who “would have gladly stabbed me with his shoemaker’s knife” [14,
pp. 248–249].

4The original Greek, as given in [30, pp. 34–35], reads:
.
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A good translation ought to bring a familiar image to the reader’s mind. Since most
modern readers are unfamiliar with the round knife shown in Figure 9, I suggest re-
naming the arbelos as “the claw.”5

5. REFLECTIONS ON PAPPUS. Some half a millennium after Archimedes died
during the sack of Syracuse in the second Punic war, Pappus of Alexandria wrote his
great Collection, a set of eight books (mostly extant) that preserve much Greek math-
ematics that otherwise would have been lost. The precise span of the life of Pappus is
uncertain, but modern histories often represent him as the last bright light of the Greek
mathematical tradition in the penumbra of the Dark Ages.

Although Pappus sometimes cites his sources, one cannot always tell when he is
improving earlier treatments and when he is being wholly original. His discussion of
the arbelos in Book IV of the Collection notably does not cite Archimedes or anybody
else by name. But Pappus makes clear that he holds no claim to the most famous
theorem about the arbelos, a theorem nowadays often attributed to Pappus by default.

This remarkable theorem states (see Figure 10) that if one inscribes a chain of
circles in the arbelos, the first circle in the chain being tangent to all three semicircles,
and the subsequent circles in the chain being tangent to the preceding circle and to two
of the semicircles, then the height of the center of the nth circle above the horizontal
line segment AB is n times the diameter of that circle. The direction of the chain is
immaterial: the chain can be directed to the left (illustrated in Figure 10), to the right,
or downward. The latter two cases are illustrated in Figure 11.

Figure 10. A classical diagram. Figure 11. Two variations.

The proposition is sometimes called the “ancient theorem” of Pappus because of
the words with which Pappus introduces it in Book IV of the Collection. Translated
loosely into modern idiom, the phrase that Pappus uses is: “The following classical
result is well known.”6

The proof that Pappus gives is a tour de force of Euclidean geometry: three lemmas
and many pages of sophisticated, systematic use of auxiliary lines, similar triangles,
and the Pythagorean theorem. For a sketch of the proof of Pappus in contemporary
language, see the paper [5] by Leon Bankoff, who was by avocation a mathematician
but by profession a dentist with an office at an upscale address near Beverly Hills.7

The modern proof using inversion is elegantly simple. In Figure 10, invert with
respect to a circle centered at A and orthogonal to the nth circle of the inscribed chain.
The nth circle inverts into itself, the two semicircles tangent to it invert into vertical

5Paul Ver Eecke, writing for a French audience [32], evidently felt that “tranchet de cordonnier” was an
insufficient translation of “arbelos,” for he glossed the term with the description “griffe de félin”—feline’s
claw.

6The Greek is given in [33, p. 208] as: .
7After the death of Victor Thébault in 1960, Bankoff was the world expert on the arbelos. Clayton W.

Dodge is editing a book manuscript on the arbelos by Bankoff and Thébault for eventual publication.
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lines, and the preceding n − 1 circles in the chain invert into circles tangent to those
lines. See Figure 12, where it is now obvious that the height of the center of the nth
circle is n times the diameter of the circle. (For the variations shown in Figure 11, one
can argue similarly by inverting in a circle centered either at C or at B.)

Figure 12. Inversion of Figure 10.

I do not know which nineteenth-century author first published this proof of the
theorem by inversion. To see a treatment in an accessible recent book, consult [8,
p. 14] or [27, pp. 136–137].

Let us go a little further with Figure 12. By the defining property of inversion,
(AC)/(AB′

) = (AB)/(AC′
). Dilating the figure by this factor with respect to the center

A moves the vertical tower of circles to a vertical tower over the line segment CB.
Since dilation preserves ratios of lengths, it follows that the distance from the center
of the nth circle of the original chain to the vertical line through the point A is equal
to a constant times the diameter of the nth circle. This observation is due to Steiner
(see [37, p. 261] or, equivalently, [38, p. 49]). The value of the constant can be read off
from the circle with diameter CB: namely, the constant equals (1/2) + (AC)/(CB).

Exercise for the reader. What is the analogous statement for a chain of circles con-
verging to the point B? to the point C?

A right triangle is called Pythagorean if it is similar to a triangle whose sides have
integral lengths. (This means that the original triangle has integral sides with respect
to a suitable unit of measurement.) An amusing remark of Steiner ([37, p. 265], [38,
p. 53]) is that if the lengths (AC) and (CB) are commensurable—that is, if the ratio
(AC)/(CB), which I will denote by ρ, is a rational number—then in Figure 10 every
right triangle with vertices at the midpoint of the line segment AB, at the center of
the nth circle, and at the foot of the perpendicular dropped from that center to the line
segment AB is a Pythagorean triangle (see Figure 13).

To see why, suppose that the nth circle has radius rn and center at the point (xn, yn),
where the midpoint of the line segment AB is taken as the origin of the Cartesian co-
ordinates. The discussion of Figure 12 implies that yn = 2nrn and xn = (1 + 2ρ)rn −
1
2 (AB). Moreover, the length of the hypotenuse of the nth triangle is 1

2(AB) − rn. Con-
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Figure 13. Some Pythagorean triangles.

sequently, what needs to be shown is that the length (AB) is a rational multiple of rn ,
for then all three sides of the nth triangle will be commensurate with rn. Combining
the Pythagorean theorem with the explicit expressions for xn and yn yields

(2nrn)
2 = (

1
2 (AB) − rn

)2 − (
(1 + 2ρ)rn − 1

2 (AB)
)2

= 2ρrn ((AB) − 2rn − 2ρrn) .

Thus (AB) = 2rn(ρ + 1 + n2ρ−1), so the length (AB) is indeed commensurate with
rn under the hypothesis that ρ is a rational number.

Exercise for the reader. Moving the first vertex of the triangle from the midpoint of
the line segment AB to the midpoint of the line segment AC produces another set of
Pythagorean triangles.

6. ARCH REFLECTIONS. One of the attractions of planar geometry is that an en-
thusiastic amateur, like Leon Bankoff, can acquire lore that surpasses the erudition of
professionals who ought to know better. I offer as evidence some unrecognized ap-
pearances of the arbelos in the lovely book Geometry Civilized by J. L. Heilbron [21].

In [21, Exercise 5.5.15], the author draws the arbelos and states the area theorem
associated with Figure 3. He does not name the arbelos, however, and he cites as
his source a problem in the Ladies Diary of 1808 (as given in [25, vol. 4, p. 106]).
Certainly it is interesting to know that geometry was a popular pastime in England two
hundred years ago, but the author is off by perhaps two thousand kilometers and two
thousand years in the provenance of the problem.

Moreover, the author does not mention that geometry was also a popular pastime in
Japan of the Edo period. In the case of a symmetric arbelos, the theorem of section 5
about a chain of inscribed circles appeared on a wooden sangaku, a geometry tablet
hung in a Japanese temple. See Figure 14, which shows also a version with a higher-

Figure 14. Sangaku problems (adapted from [18, p. 18] and [34]).
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order chain of inscribed circles from a sangaku about two centuries old. Hidetoshi
Fukagawa, a high-school mathematics teacher, is the driving force in preserving the
history of sangaku [31].

An unrecognized appearance of the arbelos occurs more prominently in [21] in
the penultimate section, which is devoted to geometric designs reminiscent of Gothic
windows. The discussion focuses on Figure 15, consisting of a semicircle, arcs of two
circles with radius coincident with the diameter of the semicircle, and a sequence of
inscribed circles condensing on the right-hand endpoint. The author states and proves
“Alison’s conjecture” to the effect that the right triangle with vertices at the left-hand
endpoint, at the center of the nth inscribed circle, and at the foot of the perpendicular
dropped from that center to the base is a Pythagorean triangle; and similarly if the first
vertex is placed at the midpoint of the base.

Figure 15. Arch (adapted from [21, p. 289]).

One distinguished reviewer of the book was sufficiently taken with this “original
result” to reproduce it (including the figure) at the conclusion of the review in this
MONTHLY [36]. As it happens, Leon Bankoff contributed this very problem to this
MONTHLY [6] half a century ago! The solution [9] was accompanied by the diagram
shown in Figure 16, which is effectively the same as Figure 15 after a rotation and a
reflection.

Figure 16. Pythagorean triangles (adapted from [9]).

The reader has realized by now, I hope, that the problem about the Gothic arch is
nothing more than a special case of Steiner’s remark (discussed at the end of section 5)
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about the Pythagorean triangles lurking in the chain of circles inscribed in the arbe-
los (see Figure 17). This special case is explicitly written out in Steiner’s paper [37,
p. 266], [38, p. 53].

Figure 17. Reflecting the symmetric arbelos into the arch.

7. MOHR ON THE ARBELOS. Since the arbelos is a classical bit of “pure” math-
ematics, I was startled to learn from [7] that the arbelos is well known in textbooks on
solid mechanics under the name “Mohr’s circles.” One of the topics of interest to Otto
Mohr (1835–1918), a renowned German civil engineer and professor of mechanics,
was how materials react to stress. Because shear stress is a key factor in the failure of
materials, Mohr used a diagram that relates the shear force to the normal force. Un-
derstanding this diagram involves the following mathematical problem (which Mohr
posed and solved).

Let L be a symmetric 3 × 3 matrix with real entries, and let V denote a unit vector
in R3, thought of as representing the normal vector to some surface. Consider the
mapping that takes the unit vector V to the pair of real numbers (x, y), where x =
V · LV (the dot denotes the standard scalar product, so xV is the normal component of
the vector LV), and y = ‖LV − xV‖ (the length of the tangential component of LV).
What is the range of this mapping (in R2) as V varies over the unit sphere (in R3)?

The remarkable answer is that the range is an arbelos. Moreover, the abscissae of
the three cusp points are the eigenvalues of the matrix. In Figure 18, the eigenvalues
are denoted by λ1, λ2, and λ3 in increasing order. (I assume that the three eigenvalues
are all distinct; otherwise the arbelos degenerates.)

Figure 18. Eigenvalues and Mohr’s arbelos.

To see why the range is an arbelos, first observe that since R3 has an orthonormal
basis consisting of eigenvectors of the symmetric matrix L, and since the range in R2

does not change when R3 is subjected to an orthogonal transformation, there is no loss
of generality in assuming that the matrix L is diagonal. Let u j denote the square of the

246 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 113



j th component of the unit vector V. Then x = ∑3
j=1 λ j u j , and y2 = ∑3

j=1 λ2
j u j − x2.

By using u1, u2, and u3 as the independent variables, one can view the domain of
Mohr’s mapping as the triangle in R3 with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1).

These vertices evidently map to the three cusp points of the arbelos indicated in
Figure 18. I claim that the three edges of the triangular domain map to the three
semicircles bounding the arbelos. By symmetry, it suffices to check one edge, say
the edge where u3 = 0 and u1 + u2 = 1. In this case, a simple calculation shows that
y2 + x2 − (λ1 + λ2)x = −λ1λ2. Since

−4λ1λ2 = (λ1 − λ2)
2 − (λ1 + λ2)

2 ,

it follows that

y2 +
(

x − λ1 + λ2

2

)2

=
(

λ1 − λ2

2

)2

.

This equation indeed describes a circle with center at the point midway between the
first two eigenvalues and with radius equal to half the distance between those eigen-
values.

To see that the interior of the triangular domain maps precisely to the interior of the
arbelos, consider how the ordinate y varies when x is held fixed. Since fixing x corre-
sponds to intersecting the triangular domain with a certain plane, the effective domain
becomes a line segment in R3. On this line segment, y2 is an affine linear function
of the variables u1, u2, and u3, so the values of y2 (hence the values of the nonneg-
ative quantity y) fill out some interval. The endpoints of that interval correspond to
certain boundary points of the domain. As observed in the preceding paragraph, each
boundary point of the domain maps to one of the semicircles bounding the arbelos. In
other words, the image of Mohr’s mapping is made up of vertical line segments each
of which connects one of the lower semicircles of the arbelos to the upper semicircle.

8. PARTING REFLECTIONS. This article is an amplified version of my reply to
the correspondent who posed the problem stated in the introduction. A full reply would
require a book, for the problem has ramifications that lead to recent developments in
contemporary mathematical research. The theorem about the chain of circles inscribed
in the arbelos has a close affinity with the famous classical problem of Apollonius:
to construct a circle tangent to three given circles. Continuing the iterations suggested
by the second sangaku in Figure 14 so as to fill up the interstices in the figure with
touching circles produces a so-called Apollonian circle packing, a subject that has
attracted much recent attention (see [24] and [39] and their references).

Eventually I discovered that the diagram in Figure 1 is incorrectly drawn. Following
the dictum of Arnold Ross to “prove or disprove and salvage if possible,” I found the
corrected problem shown in Figure 19. The central circle, instead of being tangent
to all three semicircles (corresponding to the initial circle in the chain of Figure 10),
should be the right-hand twin circle from Figure 6. Having reached the end of this
article, readers should know enough about the arbelos to solve the problem themselves.
One can look up a published solution [22] that uses Euclidean methods, but simpler is
to apply inversion.8

8Hint: It suffices to show that the line segments AF and EF meet at a right angle, for then the triangles
AFG and ECG are similar. Invert in a circle centered at A that cuts the right-hand twin circle orthogonally, and
prove that the point F is left fixed.
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Figure 19. Corrected problem: AC = EF.
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